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The combination of laterally activating and inhibiting feedbacks is well
known to spontaneously generate spatial organization. It was introduced by
Gierer and Meinhardt as an extension of Turing’s great insight that two react-
ing and diffusing chemicals can spontaneously drive spatial morphogenesis
per se. In this study, we develop an accessible nonlinear and discrete probabil-
istic model to study simple generalizations of lateral activation and inhibition.
By doing so, we identify a range of modes of morphogenesis beyond the
familiar Turing-type modes; notably, beyond stripes, hexagonal nets, pores
and labyrinths, we identify labyrinthine highways, Kagome lattices, gyrating
labyrinths and multi-colour travelling waves and spirals. The results are
discussed within the context of Turing’s original motivating interest: the
mechanisms which underpin the morphogenesis of living organisms.

1. Introduction

As a complex multicellular organism grows and develops, each one of its cells
follows the same set of genomically encoded instructions, yet different cells
beget drastically different fates so bringing about the organism’s complex struc-
ture. Turing was among the first to present a powerful idea pertaining to this
phenomenon, when he realized that a spatially homogeneous soup of just
two chemically reacting species can spontaneously morph into a structured pat-
tern owing to nothing more than the diffusion of these species, so long as the
reaction kinetics are of the appropriate activatory or inhibitory nature and the
diffusivities are sufficiently different [1]. Later Gierer and Meinhardt extended
this notion to show how processes other than reaction—diffusion can potentially
drive pattern formation: they demonstrated that any process which feeds back
on itself over two lateral ranges—one short range that quickens or activates the
process, the other long range that competitively slows or inhibits it—can spon-
taneously generate structural organization [2,3]. This combination of feedbacks
has come to be known as short-range activation and long-range inhibition and
is widely accepted as the key criteria for Turing-type patterning [3—-5].
Groups of cells can effect lateral activation/inhibition by, for example, secret-
ing ligands that diffuse on average a few cell lengths before degradation or
binding to receptors; this binding triggers an intra-cellular signalling cascade
which in turn increases/decreases the ligand’s expression. Given the vast
number of intra- and inter-cellular signals operating within and between cells,
it seems probable that other types of lateral feedback beside lateral activation
and inhibition also operate during development; furthermore, the structural
diversity among living organisms is immense, whereas lateral activation and
inhibition alone generate a limited range of patterns. What other types of lateral
feedback may be operating to bring about the development of a multicellular
organism? What patterns can be generated by recombinations of these feedbacks
and what feedbacks are necessary and sufficient to generate a particular pattern?
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Here, we study a model of interacting lattice sites that lat-
erally activate and inhibit one another [6]. The lattice sites
may be considered as a layer of immobile discrete cells,
each executing a dynamic differentiation program to transit
between Boolean states according to a common set of deter-
ministic instructions but subject to some level of noise. The
model has an important distinguishing feature: its discrete
and probabilistic formulation makes it straightforward to
introduce and to simulate additional pattern-generating
modules—additional classes of lateral feedback operating
alongside lateral activation and inhibition—in a systematic
way: the discreteness allows us to write down simple
equations governing the bifurcation diagrams, while the
noise provides an in-built test of robustness against fluctu-
ations and renders the long-term patterning dynamics
independent of the model’s initial state. For lateral activation
and inhibition only, the model’s final states of morphogenesis
are either striped, hexagonally netted, labyrinthine, spotted
or uniform block colour, patterns that are ubiquitous in
nature and are well known to be generated by Turing-type
models [6]; the additional feedback modules that we intro-
duce generate a surprisingly extended range of static and
dynamic patterning modes. The ubiquity in nature of the pat-
terning modes generated by the original model—stripes,
hexagons, labyrinths, spots—(see e.g. [7,8]; reaction—-diffu-
sion [1,9-11]; directional solidification [12]; granular/fluid
flows [13], hydrodynamic instabilities, animal furs, seashells
and more [7,14,15]) suggest that concrete applications for
these novel patterning modes may soon be discovered.

2. Model and methods
2.1. Model

The core model of discrete and probabilistic lateral activa-
tion and inhibition introduced in [6] is now described. In
each section of the results, this core model is generalized in
a different way.

The model runs on a two-dimensional square grid of lat-
tice sites that are either black (B) or white (W). From an initial
configuration, lattice sites flip their colour, from black to
white or white to black, one at a time. The rate at which a par-
ticular site flips its colour is determined by the following
three rules:

(i) a site can flip to a colour only if a neighbouring site
has that colour (this is activation at the interface);

(ii) the likelihood of flipping to a colour decreases with
the density of sites of that colour within a particular
long range r, (i.e. long-range inhibition), where r;>>1
is measured in units of a lattice site diameter;

(iii) the likelihood of flipping to a colour increases with the
density of sites of that colour within a particular short
range rg (i.e. short-range activation).

A noise level Ty is associated with the long-range inhi-
bition: as T, increases, the long-range inhibition is wiped
out. Similarly, a noise level Ts is associated with the short-
range activation. A parameter, 3, determines the strength of
the propensity for cells to flip to a particular colour, either
black or white, independently of the lateral activation and
inhibition. When B =0, this propensity is zero, then colour
configurations converge to attractors that are 50% white

and 50% black on average over multiple instances of the n

simulation; in this case, we say there is colour symmetry and
the model’s specification is unchanged when white is inter-
changed with black (see the reaction kinetics (2.1) below).
Perturbing B away from zero, then rather colour configur-
ations accumulate an excess of one particular colour—white
is more abundant for 8 > 0, while black is more abundant
for B < 0—and so B is called a symmetry breaking parameter
(figure 1a). To interpret the rules (i)-(iii) in the context of cel-
lular dynamics, each lattice site would represent a cell that
can be in one of a number of discrete states. Its ability to
change from a state A to a different state B would be depen-
dent on contact with another cell of that particular state. The
rate at which the transition A — B happens would be regu-
lated by two ligands produced by B cells, one activator of
the transition that is degraded within an average length 7y,
(long-range inhibition of type A), and one inhibitor of the
transition that is degraded within a length rg (short-range
activation of type A).

Precisely, from a given colour configuration, the prob-
ability that the next colour flip is at site x to colour C =W
or B is non-zero if and only if any of the eight neighbours
of x has colour C (the set of neighbouring colours is denoted
Ny); this probability has one of two possible forms depending
on the colour C, of site x

WeN,: C=B— W with prob.
exp(B+ Tg'(w—b)s — T (w—b) )

Z
or BEN,: Ci=W — B with prob. (22)

exp(—f+ T (b —w)s — Ty ' (b —w),,)
Z 7

where (w—b), is the fraction of white minus black sites
within range 7; around x, and Z is the colour configuration-
dependent normalizing factor, or equivalently the sum of
numerators in (2.1) over every non-zero probability colour
flip. This completely specifies the model’s reaction kinetics,
except for initial and boundary conditions which are
described in the next section. For the corresponding continu-
ous time definition and a partial derivation of the mean-field
equations (see the electronic supplementary material).
When the model is run, invariably it converges to a
macroscopically stationary attractor that is either patterned,
or homogeneously noisy, or uniform block colour
(figure 1b,c; electronic supplementary material, Movies S1
and S2, [6]). Patterned attractors are time-invariant or station-
ary if and only if sites along their interfaces flip from black to
white and back again from white to black at equal rates, so
from (2.1) we have the following necessary and sufficient
mean-field approximation for stationary attractors,

(w =), /TL = (w = Db)s /Ts = B 22)
for all sites x on interfaces. .

For lateral inhibition only and no symmetry break (high
noise on the short range Ts= oo, low noise of the long
range Ty <1 and B=0), from (2.2) stationary attractors
have wy ~1/2 along interfaces (because wy =1—0by),
whereas for both lateral activation and inhibition with no
symmetry break (Ts =T.<1 and B=0) then we have
wy, ~ ws, along interfaces. Straight interfaces satisfy the con-
dition wy, ~ 1/2, whereas wp, ~ ws, can be satisfied by
curved interfaces. Moreover, the mean-field approximation
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Figure 1. A probabilistic and discrete model of lateral activation and inhibition. (a) The model has three key rules: (i) activation at the interface; (ii) long-range
inhibition and (iii) short-range activation. (b) Sketch bifurcation diagram for colour symmetry (8 = 0): for lateral inhibition only (7, << 1, Ts = o00), dynamics
converge to stationary stripes; for short-range activation and long-range inhibition together (T, ~ Ts << 1), stripes bifurcate to stationary labyrinths; weakening the
long-range inhibition (7, >> Ts), eventually labyrinths bifurcate to bistable attractors. (c) For colour symmetry breaking (B 7 0), stripes transit to hexagonal nets
while labyrinths transit to irreqular arrangements of pores; these transitions are represented by plots of £, the summary statistic for two-colour symmetry breaking
transitions (upper plot is for lateral inhibition only; lower plot is for short-range activation and long-range inhibition together). The correspondence between patterns
and £, is colour coded by red/orange/green. Simulation parameters and numbers of instances are listed in table 1. (Online version in colour.)

predicts a linear increase of wy, with B for lateral inhibition
only (Ts = o0 in (2.2)).

2.2. Methods

Each model was simulated on a two-dimensional square grid
of (I 4 2ry) x (I + 2ry) sites. Initially, all sites of the simulation
are equally and independently likely to be one colour among
a list of permitted colours (black or white in the model above;
the list is extended in the generalizations below). Thereafter,
sites within the central square domain of [ x [ lattice sites
flip their colour according to the reaction kinetics specified
in each section. Outside of this [ x | domain, colours remain
fixed for all time—this constitutes the boundary condition.
Simulations of the core model show that the local sol-
utions predicted by the mean-field approximation (2.2)
are invariably realized: for colour symmetry and lateral
inhibition only (Ts= o0, Ty <1, B=0), attractors are
approximately straight stripes, whereas curved labyrinths
are generated by lateral activation and inhibition together

(Ts=TL<1, B=0, figure 1b; electronic supplementary
material, Movies S1 and S2, [6]). Now breaking the colour
symmetry by increasing B >0 then stripes bifurcate to
white hexagonal nets while the predicted linear increase of
wy, with B holds true for the overall fraction of white sites
in the I x| domain, as shown in the plots in figure 1c
which are fully described below; the relatively disordered
labyrinths bifurcate to relatively disordered pores. The initial
and boundary conditions appear to have no effect on the
local structure of the final pattern so long as simulations
are run until colour configurations have converged to an
attractor [6]. Near to the boundary, stripes and labyrinths
tend to align perpendicularly to the boundary and in this
way the domain’s geometry influences patterns’ orientations
(see the electronic supplementary material). The wavelength
of stripes, and of labyrinths when rg < 1y, is 41./3 (see the
electronic supplementary material) [6]; increasing the
domain size I x | appears to have no effect on this wave-
length. In all simulations, the domain size was set such that
the wavenumber [/4r /3 > 8.
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Table 1. Parameters for panels and plots in figures. The ‘end time’ is the number of transitions per simulation. n is the number of instances simulated for
generating statistics. ‘t, ‘m’, ‘b, ‘p’ stand for ‘top row’, ‘middle row’, ‘bottom row’, ‘panel’, respectively, in the corresponding figure or plot. ‘V' stands for
‘varying’ in the corresponding figure or plot.

B (rs, T, Bs, 05, %) (n, 77" Bu ou ) end time
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We have seen, then, that in this model the combination of
the three rules (i) activation at the interface, (ii) short-range
activation, and (iii) long-range inhibition generates a range
of Turing-type patterns—stripes, labyrinths, hexagonal nets
and spots—and, moreover, that in several cases the corre-
and
parameter values, i.e. the bifurcation diagrams, can be

spondence between stationary patterning modes

roughly anticipated simply by inspecting the mean-field
approximation (2.2). Therefore, we searched for interesting
new attractors by retaining the three rules (i)-(iii) while sys-
tematically generalizing the model in different simple ways.
Importantly, all generalizations in this study introduce new
linearly independent terms into the mean-field approxi-
mation for stationary interfaces: we hypothesized that only
such generalizations can produce attractors with interesting
new patterns (see the electronic supplementary material).
We consider each linearly independent term in the mean-
field approximation to be a lateral feedback module. Each lateral
feedback module has a corresponding free parameter.

In order to quantitatively represent transitions between
patterning modes, a representative summary statistic was
computed from each instance of the simulation and its vari-
ation with the corresponding parameter was plotted.
White/black colour symmetry breaking transitions, where 3
is varied from zero, are quantitatively represented by the
variation in f,, which represents the fractional excess in
white over black sites in the [ x | domain, as shown in the
plots in figure 1c. In order to generate these plots, the simu-
lation was run five times for each value of B with all other
parameters held constant. The cross-hairs are f, computed
for each instance of the simulation; the line-graph connects
the averages of f;, for different values of 8. A similar format
is followed for every plot in the article (see table 2). Table 1
lists the corresponding parameter values and the number of
repeated instances of the simulation. Other summary stat-
istics are introduced in Results; the corresponding and
complete descriptions can be found in the electronic

supplementary material. These summary statistics do not
depend on the domain size or the end time of the simulation.

3. Results

In all sections, for a clear portrayal of the model’s dynamics it
is essential to view the corresponding movies. Parameters for each
movie are listed in the electronic supplementary material.

3.1. Labyrinthine highways, train tracks and Kagome
lattices from a competing nonlinear inhibition on
the short range

A natural extension of the model, which introduces two new
lateral feedback modules while retaining rules (i)-(iii),
includes in the exponent symmetry breaking nonlinear
terms iBs(W—b)éx associated with the short range, and
symmetry  preserving nonlinear  inhibitory  terms
+od(w— b)gx which compete with the short-range activation.
Increasing Bs enhances the white colour flipping rate wher-
ever there is an imbalance of colour on the short range;
increasing |og| increases the strength of an inhibitory
response that depends on the colour imbalance on the short
range. Within a cellular tissue, Bs# 0 could correspond to a
scenario where a local imbalance of cellular states drives
cells to a particular state, while o5# 0 would imply that a
local imbalance promotes a negative feedback loop. All
other notation is left unchanged. The reaction kinetics are

WEN,: Cxy=B— W withprob.
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Figure 2. Labyrinthine highways and Kagome lattices for competing nonlinear inhibition on the short range. In all simulations, Ts = T, = 1/16; other parameters
are in table 1. (a) A nonlinear inhibitory lateral feedback that competes with the activatory feedback on the short range generates labyrinthine highways (i) and
Kagome lattices (ii). (b) Colour symmetry. Increasing |o%| > 1 causes labyrinths to bifurcate to labyrinthine highways as represented by the sudden increase in f;
(the black curve superposed on the blue curve is for /, r, and rs rescaled by a factor of 1.5 while other parameters are held constant). The bifurcation occurs only
when rs/r, < 1/2 (lower plot). (c) Colour symmetry break. In all plots, o = 2. Increasing 3 causes labyrinthine highways to bifurcate smoothly to Kagome lattices
for rs/r. = 1/2 (upper blue plot) or interwoven short- and long-scale hexagonal nets for rs/r, = 1/3 (upper black plot). Increasing Bs causes labyrinthine highways
to bifurcate to train tracks (lower plots; blue (black) curve is for rs/r, = 1/2 (1/3)). (Online version in colour.)

where Z is the colour configuration-dependent normalizing
factor. We focus on perturbations to labyrinth attractors: in
all simulations Ts = T, = 1/16 < 1. Electronic supplementary
material, Movies S3—S5 and figure 2 portray the dynamics.

For colour symmetry (8, Bs = 0), as depicted in figure 2b and
electronic supplementary material, Movie S3, increasing
|os| > 1 causes labyrinths to suddenly bifurcate to near-station-
ary labyrinthine highways so long as s /r. < 1/2. The summary
statistic representing this bifurcation in the plots of figure 2b,
denoted by fs, measures the prevalence of the short-range
spots within the labyrinth tracks (see electronic supplementary
material for details). Values of fs appear to be unaltered when
[, r, and rg are simultaneously rescaled while other parameters
are held constant, indicating that discretization effects of the
lattice are small (compare the blue and black curves which are
superposed in the upper plot of figure 2b). At least for |os| = 2,
labyrinthine highways persist when boundary conditions are
perturbed (see electronic supplementary material).

The bifurcation point |os| =1 can be qualitatively
explained as follows. So long as |og| < 1, the net short-range
feedback is always activatory for all sites since |w — bl is
bounded above by 1—there is no possibility that the short-
range feedback switches to inhibitory. When |os| > 1, the
net short-range feedback switches sign to become inhibitory

for any configuration such that [w —blg >1/|og|, then
qualitatively new dynamics are possible.

When colour symmetry is broken by perturbing 8 # 0, for
rs/r,=1/2 labyrinthine highways transit to Kagome lat-
tices—a pattern of intermeshed regular hexagons and
triangles where the diameter of the hexagon is twice the side
of the triangle—that are best known to feature in the atomic
arrangement of the minerals Herbertsmithite and jarosite, see
e.g. [16,17]. Whereas for rs/r, = 1/3, labyrinthine highways
transit to interwoven short and long-scale hexagonal nets
(for rg/r.=1/3) as depicted in figure 2c; electronic
supplementary material, Movies S4 and S5. When the short-
range symmetry breaking term is perturbed Bs#0,
labyrinthine highways transit to train tracks. As both g and
Bs are varied, the transitions between patterns are apparently
gradual and smooth, as demonstrated by the plots of figure 2c
which show gradual and smooth increases of f, (the blue curve
is for rs/r;, = 1/2; the black curve is for rs/r, = 1/3).

3.2. Gyrating labyrinths from a competing nonlinear
activation on the long range

A second natural extension of the model, analogous to the
extension of §3.1, includes in the exponent symmetry
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Figure 3. Dynamic gyrating labyrinths for competing nonlinear activation on the long range. In all simulations, Ts = T, = 1/16; other parameters are in table 1.
(a) Colour symmetry. Labyrinths bifurcate to continually gyrating labyrinths as | o7 | increases beyond a threshold greater than 1 as represented by the increase in f;
(black plot is for rs/r. = 1/3; blue and green plots are for r¢/r, = 1/2; in the green plot, /, r, and r have been rescaled by a factor of 1.5 compared with the blue
plot). (b) Colour symmetry break. In all plots, oy = 2. As either 3 or (3, increases, gyrating labyrinths bifurcate to uniform block colour attractors. (Online version

in colour.)

breaking nonlinear terms + B; (w — b)ix associated with the
long range, and symmetry preserving nonlinear activatory
terms + o7 (w — b)ix which compete with the long-range inhi-
bition. Analogous to the previous section, increasing B
enhances the black colour flipping rate wherever there is an
imbalance of colour on the long range; increasing |oy|
increases the strength of an activatory response that depends
on the colour imbalance on the long range. All other notation
is left unchanged. The reaction kinetics are

WeEN,: Cc=B— W with prob.

exp(B+Ts! (w—b)s —T; ' (w—b)+py (w—b)* — o2 (w—b)°), )
Z

and
BEN,: Cx=W — B withprob.

exp(—B+T5" (b-w)s ~Ti ' ((b—w)—-BL(b-w)* — ot (b-w)’), )
Vi ,

where Z is the colour configuration-dependent normalizing
factor. Again, we focus on perturbations to labyrinths: in all
simulations Ts = Ty, = 1/16 < 1. Electronic supplementary
material, Movie S6 and figure 3 portray the dynamics.

For colour symmetry (B, B; = 0), as depicted in figure 3a
and electronic supplementary material, Movie S6, stationary
labyrinths bifurcate to continually gyrating labyrinths as
|ov| increases beyond approximately 1.5 (rs/r. = 1/2) or 2.0
(rs/rL = 1/3). This is quantitatively represented in the plots
of figure 3a by the summary statistic f which represents
the time-averaged speed of movement of the interface (see
electronic supplementary material for details). f, appears to
be unaltered when all length-scales are simultaneously
rescaled while other parameters are held constant (compare
the blue and green curves in the plot of figure 3a), indicating
that the structure of the bifurcation diagram is unaffected by
discretization effects of the lattice. The dependency of the
bifurcation point on rs/r, may be due to more varied inter-
face geometries that are got by increasing rs/ry, since some
variations may be more likely to creep into unstable configur-
ations that must then gyrate to new configurations that are

locally stable. For oy = 2, the value of rs/r;, must exceed a
threshold of approximately 1/3 in order for this bifurcation
to occur (not shown). An argument precisely analogous to
that in the previous section explains why the bifurcation
point for |or| must be greater than 1. In the electronic sup-
plementary material, we demonstrate that gyrating labyrinths
persist upon perturbations to the boundary condition.

When colour symmetry is broken by perturbing B8 # 0,
gyrating labyrinths first freeze to be stationary labyrinths.
They then bifurcate discontinuously to uniform block
colour attractors once the magnitude of 8 exceeds a threshold
as depicted in the upper plot of figure 3b (o, = 2 and rs/r, =
1/2). The bifurcation is similar when perturbing B, # 0 but
appears to be continuous.

3.3. Multi-colour hexagonal lattices and labyrinths from
multi-colour lateral activation and inhibition

The two-colour models in the previous sections are exten-
ded to an arbitrary number of colours denoted by
Ci,i=1,2, ..., n. All symmetry breaking terms are omitted
in this section. The reaction kinetics can then be described
by a single expression:

G EeNe Ci=C —C #C with prob.
exp(3)s1 (s80()/T)((6 — i) — (e —c)’), )
Z 7
where
1 if]j=S§
sgn(/) = {tl H:L

gives short-range activation and long-range inhibition, and
ci, is the density of colour C; within range ;. We simulated
three and four colours with activation at the interface and
(i) long-range inhibition only; (ii) short-range activation
only; (iii) both long-range inhibition and short-range acti-
vation; and (iv) symmetry preserving nonlinear terms that
compete with the short-range activation (Jog| > 1) or the
long-range inhibition (Jor| > 1). The dynamics are portrayed
in figure 4.
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Figure 4. Patterning modes for multi-colour lateral activation and inhibition. (a) For no lateral feedbacks (Ts = T, = o0), attractors are homogeneous. For lateral
inhibition only (75 = oo, T} << 1), attractors are a stationary multi-colour lattice, whereas for lateral activation only (Ts << 1, T, = 00), attractors are multi-
stable uniform block colour. Short-range activation and long-range inhibition together (Ts ~ T < 1) generate multi-colour labyrinths. (b) Increasing the nonlinear
short-range inhibition |o%| > 1 produces multi-colour labyrinthine highways (rs/r, = 1/3). Increasing the nonlinear long-range activation |oy| > 1 produces
gyrating labyrinths for four colours but for three colours attractors appear to remain stationary (rs/r. = 1/2). (Online version in colour.)

As depicted in figure 4a, lateral inhibition only
(Ts = o0, Ty, < 1) generates stationary hexagonal lattices. Lat-
eral activation only (Ts <1, Ty, = o) generates multi-stable
block colour attractors where finally each site has the same
colour and all of the permitted colours are equally likely.
Short-range activation and long-range inhibition together
(Ts = T, < 1) generate multi-colour labyrinths. These attrac-
tors are analogous to two colour stripes, bistable uniform
blocks and labyrinths depicted in figure 1.

When multi-colour labyrinths are perturbed by increasing
the short-range symmetry preserving nonlinear competition
|os] > 1, multi-colour labyrinths bifurcate to patterning
modes that are analogous to labyrinthine highways for
three and four colours (figure 4b). However, increasing the
long-range symmetry preserving nonlinear competition
|op] > 1 causes only four-colour labyrinths to bifurcate to
gyrating  four-colour three-colour
labyrinths bifurcate to attractors that appear not to gyrate.

labyrinths, ~whereas

3.4. Travelling stripes and spirals and reorganizing
labyrinths from cyclic symmetry breaking

When the model is extended to more than two colours, a new
mode of symmetry breaking is possible which, unlike in §3.1
and 3.2, does not enforce an accumulation of one particular
colour. As in §3.3, because there are no symmetry breaking
parameters that are associated with particular colours, the

reaction kinetics can be described by a single expression:
C]‘ eENye: C=GC— C] # C; with pI'Ob.

exp(X-su (s8n()/T)) (¢ — ci), + % (Mey,))
> ,

+1
-1

where again

ifj=5
ifJ=L

sgn(/)

enforces short-range activation and long-range inhibition,
and where (Mcy,); is the jth element of the vector

0 1 -1 c1)x
Mg, = -1 0 1 cJx | or
1 -1 0 c3)x
0 1 0 -1 c1x
-1 0 1 0 C2 ] X
0o -1 0 1 calx |
1 0 -1 0 c4fx

for three or four colours, respectively, and M can be defined
similarly for n colours. The circulancy of M drives the
dynamics in a symmetry breaking cyclic colour ordering
Ci—C—--—C,—C for v, v >0. Colours can no
longer be arbitrarily exchanged for one another without chan-
ging the model’s specification, yet there is no a priori
propensity for one particular colour to accumulate. Reversing
the sign of vs (or y.) drives the cycle in the opposite direction
on the short (or long) range. This circulancy condition could
correspond to a scenario where cells transit between states as
partly governed by a non-transitive rock—paper-scissors-like
dynamic; for example, high local density of state C; enhances
the likelihood of state C, possibly via the diffusivity of some
Cy-produced species, similarly high local density of state C,
enhances the likelihood of state C;3 and high local density of
state C3 enhances the likelihood of state C;. A similar mode
of symmetry breaking has been called cyclic dominance and
studied in a spatial and probabilistic context within [18].

For lateral inhibition only (Ts = oo, T|, < 1), cyclic sym-
metry breaking with |y; | ~ 1 causes stationary multi-colour
lattices to bifurcate to travelling stripes (three colours) or
travelling lattices (four colours) (figure 5; electronic sup-
plementary material, Movie S7). For lateral activation only
(Ts < 1, Ty, = ), cyclic symmetry breaking with |ys|~ 1
causes multi-stable uniform block attractors to bifurcate to
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homogeneous

6 12
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Figure 5. Travelling stripes, multi-colour swirls and reorganising labyrinths from cyclic symmetry breaking. For lateral inhibition only (s = oo, T << 1), increasing
||~ 1 causes stationary multi-colour lattices to transit to travelling stripes/lattices (three colours/four colours); whereas for lateral activation only
(Ts <1, T, = 00), increasing |ys| & 1 causes multi-stable blocks to transit to cyclic spirals. For both lateral activation and inhibition (Ts = T, < 1), increasing
either |ys| = 1 or |y | ~ 1 causes stationary multi-colour labyrinths to transit to dynamic, continually reorganizing attractors. Panel: For cydlic spirals
(Ts <1, T, = 00, |y5| & 1), the total number of spiral foci in the domain N varies linearly with 2 /r§ (top plot); changing the initial conditions to hexago-
nal/diamond lattices then varying the diameter of initial hexagons/diamonds (middle/bottom plot) appears to have little effect on N compared with the default

initial condition (dashed line). (Online version in colour.)

cyclic spiralling attractors (figure 5; electronic supplementary
material, Movie S8). Strikingly, the focal points of the spirals
appear to be stuck rigidly in one place and rarely wander
within the domain. Simulations indicate that the number of
spiral foci at the end of the simulation N varies linearly
with 12/ (figure 5 inset panel, top plot); N appears to be
unaffected by the simulation’s initial condition (figure 5
inset panel, middle and bottom plots).

For short-range activation and long-range inhibition
together (Ts ~ Ty, < 1), cyclic symmetry breaking on the
short or long range (|ys| =~ 1 or |y, | ~ 1) causes multi-colour
labyrinths to continually reorganize (see electronic supplemen-
tary material, Movies S9 and S10). These multi-colour
reorganizing labyrinths appear sensitive to perturbations to
the boundary condition, unlike the cyclic spiralling attractors
(see the electronic supplementary material).

4. Discussion

The models we have presented are simple generalizations of
the well-known pattern-producing dynamics of lateral acti-
vation and inhibition. Yet, despite their simplicity, to our
surprise they have produced a broad range of dynamics
and attractors including labyrinthine highways, Kagome

lattices, gyrating labyrinths and corresponding multi-species
analogies. In some cases, to the best of our knowledge, the
models constitute novel phenomenological mechanisms for
generating such patterning modes. We anticipate that these
attractors are robust to changes in details of the model such
as the square geometry of the lattice or the precise formulation
of the reaction kinetics and rather that they depend on the class
of interactions implemented by the model. Whether the geo-
metry of the square lattice impacts upon results could be
better established by adapting our code, which is available
on request and uses plugins from the software Processing
[19], to run on hexagonal or Voronoi grids or by completing
the derivation of the mean-field equations (see the electronic
supplementary material) and simulating the resulting system
of PDEs. We further anticipate that for each class of inter-
actions all qualitatively distinct attractors were identified: a
simple mean-field equation governing the model’s output
allowed us to search for new patterns systematically. The
ease of implementation of simulations, the ease of interpret-
ation of bifurcation diagrams, and the capacity for
systematically exploring parameter space are strengths of this
approach compared with continuum deterministic reaction—
diffusion systems, which can be coupled to produce patterning
modes similar to labyrinthine highways, gyrating labyrinths
and cycle swirls as elegantly shown in [20,21] (table 2).
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Table 2. Definitions of summary statistics.

fy the fractional excess of white over black lattice sites
fs a measure of the prevalence of short-range spots within the
labyrinth pattern

fi a measure of the average speed of movement of the
interface
N the total number of spiral foci in the / x / domain

Since we believe that the model outputs do not depend on
details of the implementation, we explore and speculate
about the likely applicability of the models to biology. Firstly,
our study indicates that such complex patterns—beyond
stripes, labyrinths and hexagonal nets—such as labyrinthine
highways or Kagome lattices may be generated by a collec-
tion of cells with the following properties: (i) a master
regulator that once expressed initiates the expression of two
diffusing ligands and a membrane-junction signal; (ii) receiv-
ing the membrane-junction signal from a neighbouring cell is
an absolute requirement for the expression of the master reg-
ulator; (iii) the first ligand diffuses in excess of a few cell
lengths on average before being degraded; or it binds to
cell-surface receptors to trigger a signal that decreases the
likelihood of expression of the master regulator; (iv) the
second diffusing ligand, which tends to be degraded within
a range that is short compared with the range of the first dif-
fusing ligand, upon binding to a receptor either increases or
decreases the likelihood of expression of the master regulator
depending on whether the number of bound receptors is
below or above a threshold. However, it must be recognized
that our model is only an abstract representation of (i)-(iv); in
particular, it represents only cases where the time-scales of
diffusion, degradation and membrane-junction signalling
are much faster than the time-scale of the master regulator’s
response to such signals. There are other possible long-
range signalling mechanisms besides diffusion, operating
over lengths which span multiple cells, that can account for
lateral feedbacks: in animals, these include the active

migration of cells, e.g. [22], and the dynamic protrusions of n

filopodia, e.g. [23,24].

Secondly, our toy model motivates us to speculate about a
possible dynamical feature of some developmental programs.
In the model, when parameters enforce what we have called
colour symmetry (8 = 0)—a prerequisite for e.g. stripes and
labyrinths—that region of parameter space is comparatively
rich in the diversity of final patterns that are generated; con-
sequently, the final pattern responds sensitively and flexibly
to sustained changes in parameter values. The broad range
of natural patterns suggests that this might be evolutionarily
advantageous. While genetic drift would tend to take the
system away from colour symmetry, we expect evolution to
act as a tuning force which maintains the sensitivity and
flexibility of developmental programs."
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tary material and all movies can be found at https://www.
repository.cam.ac.uk /handle/1810/253075.

Authors” contributions. L.W. conceived of the study, carried out the model
analysis and wrote the manuscript; A.K. guided the model analysis
and the writing of the manuscript. All authors gave final approval
for publication.

Competing interests. We have no competing interests.

Funding. This work began while L.W. was supported by an EPSRC
fellowship.

Acknowledgements. This work began under the supervision of Tom Duke
at the London Centre for Nanotechnology and CoMPLEX, University
College London. Tom Duke is deeply missed. We thank David Wright
for running a number of simulations and for stimulating discussions,
Michael Cohen for introducing us to discrete models of lateral
inhibition, and Pau Formosa-Jordan for a critique of the manuscript.

Endnote

"We describe a dynamical system tuned to its critical point. A self-
tuned critical system is known to operate in the inner ear where it
affords tremendous sensitivity of response to vibrations of minute
amplitude [25], but, as far as we are aware, no specific system is
thought to operate in this manner owing to the action of evolution
on the genome.
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