
rsos.royalsocietypublishing.org

Research
Cite this article: Hallou A, Jennings J, Kabla
AJ. 2017 Tumour heterogeneity promotes
collective invasion and cancer metastatic
dissemination. R. Soc. open sci. 4: 161007.
http://dx.doi.org/10.1098/rsos.161007

Received: 6 December 2016
Accepted: 12 July 2017

Subject Category:
Cellular and molecular biology

Subject Areas:
biophysics/theoretical biology

Keywords:
cancer, tumour heterogeneity, metastasis,
collective invasion

Author for correspondence:
Alexandre J. Kabla
e-mail: ajk61@cam.ac.uk

Electronic supplementary material is available
online at https://dx.doi.org/10.6084/m9.
figshare.c.3844762.

Tumour heterogeneity
promotes collective
invasion and cancer
metastatic dissemination
Adrien Hallou, Joel Jennings, Alexandre J. Kabla
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

AJK, 0000-0002-0280-3531

Heterogeneity within tumour cell populations is commonly
observed in most cancers. However, its impact on metastatic
dissemination, one of the primary determinants of the
disease prognosis, remains poorly understood. Working with
a simplified numerical model of tumour spheroids, we
investigated the impact of mechanical heterogeneity on the
onset of tumour invasion into surrounding tissues. Our work
establishes a positive link between tumour heterogeneity
and metastatic dissemination, and recapitulates a number
of invasion patterns identified in vivo, such as multicellular
finger-like protrusions. Two complementary mechanisms are
at play in heterogeneous tumours. A small proportion of
stronger cells are able to initiate and lead the escape of cells,
while collective effects in the bulk of the tumour provide the
coordination required to sustain the invasive process through
multicellular streaming. This suggests that the multicellular
dynamics observed during metastasis is a generic feature of
mechanically heterogeneous cell populations and might rely on
a limited and generic set of attributes.

1. Introduction
Metastasis, the process during which cancer cells migrate away
from a primary tumour and disseminate in other organs, accounts
for more than 90% of cancer fatalities [1]. At the cellular
level, malignant cell behaviour has been associated with an
accumulation of gene mutations and a malfunction of key
regulatory signalling pathways [2,3] such as TGF-β or Twist [4,5].
Moreover, following earlier pioneering works [6], recent analyses
have established that most solid tumours are not homogeneous
but a mosaic of various cell populations with different genetic
and phenotypic traits [7]. Owing to the variability in these
factors across different pathologies, patients and even tumours,
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no unique mechanistic pathway leading to the induction and progression of metastasis has been yet
characterized [8,9].

By contrast, recent advances in imaging techniques at the tissue scale [10–13], along with
histopathological studies on patients’ biopsies [13], draw a surprisingly unified picture of cancer
invasion in terms of cell migration behaviours. In most cancers, despite tremendous variations in gene
expression and biochemical environment, tumour cells are able to invade collectively by maintaining
intercellular coordination [13–18], generating multicellular structures such as cell sheets, strands or
clusters remaining cohesive and polarized [14]. The accumulated knowledge about collective cell
migration [19] and its quantitative biophysical models [20,21] is therefore likely to inform the question
of tumour invasion at a system level. Recent results have also highlighted a link between tumour
heterogeneity and metastatic dissemination through collective invasion. Experimental evidence suggests
that non-invasive or poorly invasive tumour cells can be driven to invade by invasion-competent cancer
cells [17,18,22–24] or stromal fibroblasts [15,16,25] through a ‘leader/follower’ invasion mechanism
[13,26].

In this article, we aim to address the question of the impact of tumour heterogeneity on malignancy.
We use a minimal model for collective cell migration in order to identify both the individual and
synergistic effects of cell coordination and cell heterogeneity on tumour invasion.

2. Modelling approach
Our model involves a Cellular Potts algorithm [27] including a self-propelled term to account for the
active motion of cells [28–30]. It builds on the computational framework introduced previously [30]
to study the collective dynamics of cell populations invading two-dimensional resistive environments,
most often at the planar interface between two different tissues, along tracks created by blood vessels,
myofibres or nerve bundles [12,31].

This approach is appealing, as the Cellular Potts algorithm has already been used to model a variety of
tissue behaviours associated with cancer invasion [32–34] or heterogeneous collective migration during
angiogenesis [35,36]. Furthermore, our model [30] has been already fully characterized in the context
of homogeneous motile cell populations, and has made numerous predictions verified in experiments
[37–39]. Details of the computational method and numerical values of the parameters used in in silico
experiments are provided in the electronic supplementary material.

The key physical parameters of the model are the cell size (or area in two dimensions), its
compressibility (low compared with other forces at play), the surface energy of the cell interface which
controls the shear stiffness, tissue cohesion and some aspects of energy dissipation. In addition, each
motile cell i exerts a motile force μini acting on a planar substrate, where ni(t) defines the direction of
its front–rear polarity, and μi its active motile force magnitude. The polarization vector ni(t) also evolves
over time and is set along the direction of the mean previous displacements of the cell in the time interval
[t − τ , t]. It represents the time-scale at which cell polarity responds to external stimuli and controls the
persistence length of the cell trajectory in the absence of other cells [28,30]. Simulating the evolution of
the system relies on a stochastic Monte-Carlo algorithm (cf. electronic supplementary material), which
defines the arbitrary time unit used in this paper, the Monte Carlo Step (MCS). The associated noise or
stochasticity level is also a parameter, although it has been found not to play a critical role in the range
of surface energy and motile force explored here [30].

Earlier numerical work on migratory cell populations [30] has evidenced two behavioural transitions
in cell dynamics (cf. electronic supplementary material, table S1). Keeping all parameters but the motile
force μ constant, the system exhibits: (i) a critical force μs needed for a single cell to migrate through
a non-motile cell population; (ii) in homogeneous cell populations, a transition from static epithelial
behaviour to collective streaming, at a critical value of the motile force parameter μc < μs; and (iii) a
regime of motile forces μc < μ < μs associated with large spatial and temporal correlations of collective
cell behaviours. The latter is of particular interest when considering a minimal tumour model, composed
of a two-dimensional spheroid of motile cells surrounded by cohesive tissues that mechanically resist
invasion as often observed in vivo [12].

As introduced previously [30], homogeneous tumour spheroids here consist of bulk tumour cells
of motile force μb surrounded by a population of non-motile cells, all other parameters of the
model being kept uniform in order to avoid biasing cell migration towards surrounding tissues. Cells
displayed behaviours ranging from no invasion, μb < μc, to widespread single cell dispersal for μb > μs
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Figure 1. Collective invasion for homogeneous tumours. (a) Snapshots of in silico experiments. Top-left quadrant represents the initial
state of the system (green–blue cells are non-motile, yellow–red cells are bulk tumour cells). The three other quadrants (1–3) represent
the state of the system for different values ofμb at t = 4500 MCS. (b) Invasion length of bulk tumour cellsΛb with respect to time, for
different values ofμb. (c) Invasion rateΓb with respect toμb. Details on the computation of plotted quantities from in silico experiments
are provided in the electronic supplementary material.μc andμs values relate to cell migration behaviour transitions. Error bars are the
standard error of the mean (s.e.m.).

(cf. figure 1a; electronic supplementary material, movies S1, S2, S3, S4 and S5). The regime where
μc < μb < μs is remarkable. Invasion of tumour cells, although slow, is observed and takes the form
of finger-like collective patterns (cf. figure 1a bottom-right quadrant; electronic supplementary material,
movie S2), as described in many in vivo studies [10,11,13]. This indicates that although no individual cell
is able to invade in this regime, collective effects occasionally lead to larger mechanical forces sufficient
to enable invasion. While this might capture a fundamental mechanism involved in the early stages of
collective invasion, finger formation, in these in silico experiments, is a rare event and might not account
for highly malignant situations observed in vivo. Several reasons may explain this limited amount of
collective invasion. The strength of collective invasion [17,40] tends for instance to be reinforced in vivo
by complementary biochemical processes such as enzymatic tissue remodelling [40], a fact already
reproduced in silico with some success [29]. The analysis presented below demonstrates how mechanical
heterogeneities may also dramatically increase the dynamics of cancer invasion. The homogeneous case
is further analysed to develop a control dataset from which the effects due to a small sub-population of
mechanically stronger cells can be assessed. The model will specifically focus on the onset of invasion, a
regime where cell motility is the key driver [22]. We therefore assume that cell growth and proliferation
effects can be ignored.



4

rsos.royalsocietypublishing.org
R.Soc.opensci.4:161007

................................................
(a)

he
te

ro
ge

ne
ou

s 
tu

m
ou

r 
(4

50
0 

M
C

S
)

initial configuration 4

56

mf = 0.175 < ms
mb = 0.150 ~ mc

mf = 0.350 > mf
mb = 0.150 ~ mc

mf = 0.475 > ms
mb = 0.150 ~ mc

10

15

20

25

5

30

20

0

35
40

3530

0.200 0.250 0.300 0.350 0.400 0.450 0.500
0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0

5

10

15

20

25

30

35

40

45
normalized invasion rate/stronger cell (W)

stronger tumour cells motile force (mf)

bu
lk

 t
um

ou
r 

ce
ll

s 
m

ot
il

e 
fo

rc
e 

(m
b)

ms

mc

ms

%(b)

654

Figure 2. Collective invasion for heterogeneous tumours. (a) Snapshots of in silico experiments with 24 stronger cells. Top-left quadrant
represents the initial state of the system (green–blue cells are non-motile, yellow–red cells are bulk tumour cells, black cells are stronger
tumour cells). The three other quadrants (4–6) represent the states of the system for different values ofμb andμf at t = 4500 MCS.
(b) Heat map of the normalized invasion rate per stronger cellΩ . The maximum is observed forμb = 0.150 andμf = 0.350. Details
on the computation ofΩ from in silico experimental data are provided in the electronic supplementary material.

3. Results and discussion
3.1. Invasion from homogeneous tumours
In all numerical experiments, we selected an initial tumour radius r0 of the order of 10 cell diameters,
corresponding to a population of around 300 cells (figure 1a), which is a typical size observed in similar
in vivo [22] and in vitro experiments [17]. The extent of invasion is characterized by the length Λb(μb, t)
corresponding to the sum of the distances from the initial tumour boundary to each cancer cell i that is
outside the initial boundary at time t [30]. This cumulative quantity encompasses both the spatial extent
of invasion and the number of invading cells. Λb varies almost linearly with time for the first thousand
MCS, as shown in figure 1b in the context of a homogeneous population of motile cells. The capacity of
bulk tumour cells to invade surrounding tissues can, therefore, be characterized as a rate of invasion at
short time scales, Γb(μb) = Λb(μb, �t)/�t. The evolution of Γb as a function of the cells’ motile force μb
is represented in figure 1c, for �t = 1200 MCS. The sensitivity and convexity of the invasion rate to the
motile force of the tumour cells is a preliminary indication that heterogeneities in the motile properties
of the cancer cells could have a significant effect on invasion rates and patterns.

3.2. Invasion from heterogeneous tumours
Heterogeneity is introduced in the system in the form of a small number, Nf, of cells positioned at the
boundary of the tumour (cf. figure 2a), with a larger motile force, μf. This configuration is commonly
found in vivo [17] and provides a reproducible starting point to study the initiation of the invasion
process. We analysed the behaviour of the system for Nf = 6, 12 or 24, i.e. about 2%, 4% or 8% of the total
motile cell population respectively, proportions again consistent with experimental observations [15–18].
As for the homogeneous tumour case, the invasive behaviour of bulk tumour cells in the presence of these
particular cells is monitored by computing the invasion length Λf(μb, μf, Nf, t) and the corresponding
invasion rate Γf(μb, μf, Nf) = Λf(μb, μf, Nf, �t)/�t.

The effect of heterogeneity on the invasion efficiency is measured as the percentage increase in the
invasion rate per stronger cell: Ω(μb, μf) = (∂NfΓf)/Γb (figure 2b). As expected, the presence of stronger
cells brings no significant enhancement to the invasion efficiency for μb ≥ μs, where the bulk of the cancer
cells are able to invade on their own. Furthermore, when both bulk and stronger tumour cells generate
a motile force below the threshold for single cell invasion, there is only a marginal effect on invasion
(cf. electronic supplementary material, movie S6).
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Figure 3. Morphology of invading structures in heterogeneous tumours. Heat map of the proportion of fingers led by a stronger cell.
Details on the computation of this quantity from in silico experiments data are provided in the electronic supplementary material. The
dataset presented is the same as for figure 2b.

By contrast, when the bulk of the tumour is in the regime of collective invasion (μc ≤ μb ≤ μs), the
addition of a small number of stronger cells (μf ≥ μs) has a dramatic effect. Each of them significantly
increases the invasion rate (20% ≤ Ω ≤ 45%), with an optimum for μb ≈ 0.150 and μf ≈ 0.350.

3.3. Morphological analysis
To understand the origin of this optimum, we analysed the morphology of the tumour at the onset of
invasion. Figure 2a illustrates the typical spatial arrangements between stronger and bulk tumour cells in
protrusive fingers, in which stronger cells are commonly seen initiating and leading fingers (cf. electronic
supplementary material, movie S7). To quantify these morphological features, a graph-based method is
used to identify the contact network of cells leaving the tumour. Fingers are defined as groups connected
to the tumour body that are more than two cells away from the tumour boundary. The tip is defined as
the cell of the finger which is topologically the furthest away from the original tumour boundary. The
length of a finger is the length of the shortest path between its tip and the original tumour boundary,
measured in number of cells.

Figure 3 shows the proportion of fingers led by a stronger cell, pooling all data from experiments
with 6, 12 and 24 stronger cells. In the regime of collective invasion (μc ≤ μb ≤ μs), up to 70% of the
fingers can be led by stronger cells, far more than what would be expected from their density at the
tumour boundary (approx. 25–30%) in average. Stronger cells, therefore, promote invasion by acting as
leader cells.

The trend observed in figure 3 along the μb axis is expected. When μb > μs, all cells can invade and
fingers are equally likely to be led by any cell type; consequently, the proportion of fingers led by a
stronger cell decreases. Similarly, when μb < μc, bulk cells cannot migrate on their own and any of the
rare emerging invading structures would be pulled by stronger cells. The fact that the proportion of
fingers led by a stronger cell decreases with μf for large values of μf is more surprising (cf. region between
points 5 and 6 in figure 3). Why would an increase in the motility of the stronger cells reduce their ability
to lead fingers?

Figure 4a shows that the proportion of stronger cells leaving the tumour by a specific time (approx.
4000 MCS) increases monotonically with μf, up to more than 60% for μf = 0.5. This is associated with an
increase in the number of fingers pulled per stronger cells (figure 4b). In the range 0.175 < μf < 0.350, this
number matches the proportion of stronger cells leaving the tumour. However, the number of fingers
pulled per stronger cell plateaus for μf > 0.350, suggesting a change in the interaction between bulk
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increase in average finger lengthwith respect to the homogeneous case (μb = 0.150) as a function ofμf . (d)Mean contact time for both
bulk–bulk and bulk–stronger cells pairs as a function ofμf . Details on the computation of these quantities from in silico experimental
data are provided in the electronic supplementarymaterial. Circled numbers relate to results in figures 2a and 3. Error bars stand for s.e.m.

and stronger cells. Not only does the number of fingers saturate, but their length also diminishes as
μf increases beyond 0.350 (figure 4c). The finger initiation step is, therefore, not responsible for the
invasiveness decay at large μf. To interpret this behaviour, we analysed the distributions of interaction
times between motile cells during the first 2000 MCS (cf. electronic supplementary material, figures S1
and S2). Figure 4d shows the mean contact duration between two bulk cells, and between a bulk cell and
a stronger cell, as a function of μf. These data show that, as μf increases, there is a growing mismatch
between these interaction times; a high motile force prevents the stronger cells from maintaining
sustained contacts with bulk cells. This implies that, for large μf, stronger cells detach from bulk cells
too quickly to generate long fingers, leaving short fingers behind that are unable to invade further into
the tissue (cf. electronic supplementary material, movie S8). These results shed light on the invasion rate
data presented in figure 2b as the invasion rate is expected to scale with both the number of fingers and
their length. Indeed, figure 2b can be approximatively replicated by multiplying the increase in number
of fingers per stronger cell and relative increase in finger length (cf. electronic supplementary material,
figures S4, S5 and S6). Therefore, the optimum invasion is a signature of the distinct requirements for
(i) initiating finger like protrusions and (ii) sustaining their penetration into surrounding tissues.

Another observation from the model is the clustering of the invading cell population due to fingers
breaking up from the primary tumour. These tumour cell clusters have a typical size of two to six cells
and can be heterogeneous (cf. electronic supplementary material, figure S7). Although agreement with
quantitative experimental data might be coincidental, it is worth noting that both the size and the degree
of heterogeneity are close to the typical values measured for circulating tumour cell clusters in vivo
[41–43].

4. Conclusion
By combining two key observations of in vivo cancer metastasis, collective cell behaviour and
tumour phenotypic heterogeneity, the minimal model presented here demonstrates that mechanical
heterogeneity has a dramatic impact on cancer invasion dynamics. The origin of such effect is not
associated with a growth driven instability [44]. We anticipate, however, that growth and cell division
would enhance collective invasion behaviours as has been reported [12]. In our model, the invasion
rate is maximized when the population contains cells with complementary traits, combining a few
invasion competent cells with a bulk population able to collectively migrate and follow leading cells
away from the main tumour. Such a qualitative interpretation of the results is consistent with the fact
that various forms of tumour heterogeneity lead to similar invasion patterns; stromal fibroblasts [15,16],
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genetic or phenotypic variability [17,18] or partial epithelial-to-mesenchymal transition [45,46] within
the tumour are all able to trigger collective invasion patterns led by highly motile cells. These similarities
can be explained by the fact that generic physical interactions are sufficient to reproduce leader/follower
dynamics in invading finger-like multicellular protrusions. Although we considered heterogeneities in
cell motile forces, we anticipate that differences in other cellular attributes such as proteolytic activity
[40], adhesion [46] or cell stiffness [47] are likely to lead to similar invasion patterns when combined
with collective effects in the cell population.

A general approach to the physics of heterogeneities in collective systems is still lacking. This
work demonstrates that developing such a framework would represent an important contribution to
understanding a number of biological processes both in animal development and pathologies.
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