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Local Stress Relaxation and Shear-banding in a Dry Foam under Shear

Alexandre Kabla and Georges Debrégeas∗
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We have developed a realistic simulation of 2D dry foams under quasi-static shear. After a short
transient, a shear-banding instability is observed. These results are compared with measurements
obtained on real 2D (confined) foams. The numerical model allows us to exhibit the mechanical
response of the material to a single plastication event. From the analysis of this elastic propagator,
we propose a scenario for the onset and stability of the flow localization process in foams, which
should remain valid for most athermal amorphous systems under creep flow.

PACS numbers: 05.40.-a 83.50.-v 83.60.-a

Amorphous glassy materials are ubiquitous in indus-
try and nature: they include silica-based glass-formers
and polymer melts below Tg, dense colloidal suspensions
and emulsions, foams and dense granular systems. Un-
like crystalline solids, plasticity in such systems origi-
nates from discrete local relaxation events [1, 2], involv-
ing a small number of particles (atoms, grains, bubbles,
etc...). Spatial and time correlations in the occurrence of
these plastic events are generally important, leading to
avalanche-like dynamics [3, 4, 5] and spatially inhomoge-
neous flows [6, 7, 8]. Glassy rheology thus remains one
of the most active and challenging domains of statistical
physics.

Amongst the large number of theoretical and numer-
ical models recently proposed, foam has emerged as a
strongly inspiring model system [9, 10, 11]. First, be-
cause thermal energy is strictly irrelevant on bubble scale,
creep flow experiments can be run (by imposing an in-
finitely low deformation rate) in which time dependent
effects are absent. Second, the bubble mechanics is sim-
ple and yields a wide linear elastic regime. Finally, plas-
ticity in foams is associated with well identified processes.
In spite of this apparent simplicity, many features of
foams flow remain to date unexplained [12]. Thus, shear-
banding flows have been recently exhibited in a 2D Cou-
ette experiment [13]. In this study, a monolayer of bub-
bles squeezed between two glass plates was slowly sheared
between two concentric discs. Much of the rearrange-
ments were found to occur in a thin region (a few bub-
bles in width) along the edge of the inner disc. In the
present letter, we directly address this question by de-
veloping a numerical model adapted to the quasi-static
shearing of 2D dry foams. The observed flow features
are compared with experimental data obtained with the
same set-up as in [13]. This model allows us to inves-
tigate the micro-scale mechanics of the foam leading to
strain localization.

We use Voronoi tessalation to build polydisperse struc-
tures of W × L = 16 × 48 cells separated by straight
segments. These are later referred as bubbles and films
respectively, by analogy with real foams, the intercept
between films being called a vertex. These structures

a
b

c

d
a

b
c

d

T1

(a)

(b)

y

x

FIG. 1: (a) Snapshot of a simulated foam with 16 × 48 bub-
bles. The polydispersity is 6%. The foam has periodic bound-
ary conditions along the x direction. Films laying at upper
and lower edges are fixed; shearing is obtained by moving the
lower edge along the x direction. (b) Example of a topological
change (T1 process) occurring inside the foam upon shearing.

have periodic boundary conditions along the x direction,
and films laying at the upper and lower edges are fixed
to allow subsequent plane parallel shearing (Fig. 1(a)).
To obtain a mechanically equilibrated structure, the total
film length is minimized at fixed topology and with a con-
stant volume constraint on each bubble, as expected for
static dry foams [14]. Our algorithm is based on Surface
Evolver [15], a software widely used in foams structural
studies [16]. The main difficulty of this minimization pro-
cedure comes from the existence of very soft modes asso-
ciated with large-scale shear deformations [17]. A special
care is thus put in equilibrating these modes. The over-
all procedure is then validated by imposing various strain
fields to the initial foam, and checking that the resulting
equilibrated structure remains unchanged.

Once the foam has been mechanically equilibrated,
plasticity is introduced by allowing T 1 rearrangements
- the elementary topological changes in 2D foams (see
Fig. 1(b)). In a real dry foam, vertices have a finite size
which depends on the liquid fraction. When a film be-
comes smaller than this length, the two vertices attract
and a T 1 event is triggered. We mimic this criterion
by exchanging bubbles neighbors when one of the film
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length falls below a fixed value lv, corresponding to a liq-
uid fraction φ = 1%. The T 1 events are triggered one at
a time and followed by a complete mechanical equilibra-
tion. This two-step procedure is iterated until all films
are stable with regards to the T 1 criterion. It should be
noted that this procedure might not precisely reflect the
physical process taking place during an avalanche of T 1
events. Indeed, in a real foam plasticity and mechanical
equilibration take place simultaneously. Our procedure
implicitly assumes the latter to be much faster than the
T 1 event. Finally, the foam is quasi-statically sheared
by iteratively moving the lower edge over a short dis-
tance then equilibrating the structure and allowing plas-
tic events.
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FIG. 2: Localization process in a simulated foam. (a) The
y−position of the T1 events as a function of the wall displace-
ment D expressed in bubble diameter. (b) Distribution of the
y−positions of the T1 events for D < 15 (transient regime)
and (c) D > 20 (localized regime). In the latter, the dotted
line shows the gradient ∂v

∂y
(y) of the associated plastic flow

profile v(y).

Figure 2 conveys the main result of the present study:
it displays the yT1 positions of the rearrangements as a
function of the imposed wall displacement D. After a
short transient (for D ∼ W i.e. an imposed strain ∼
1), the rearrangements permanently gather within a thin
shear-band in the vicinity of the lower wall. This strain
instability is observed for all the simulations, with a flow
localization taking place on either wall depending on the
initial foam structure. In the following we mainly focus
on measurements performed in the steady-state localized
regime.

From the sequence of equilibrated structures, we mea-
sure the trajectories of the bubbles centers to extract the
flow field at each time step. Furthermore, we can com-
pute the internal shear stress on any sub-volume w using
the following relation (where the summation is performed

over all segments ~l inside w) [12]:

σxy(w) =
1

w
·
∑

~l∈w

lx · ly
l

(1)

We have compared time averaged measurements from
the simulation with experimental data we obtained
using the same liquid fraction (φ = 1%). Figure 3 shows
the tangential velocity profiles and the normal velocity
fluctuations for the experiment and the simulation.
For both quantities, we observe similar decays with
the distance from the wall. Other flow features, such
as the stress fluctuations profiles (presented below),
show a similarly good agreement. This adequacy proves
the validity of the present simulation. Conversely, it
demonstrates that the shear-banding observed in [13]
is not due to the Couette geometry, in which the mean
stress decreases with the distance from the inner disc.

(b)(a)

experiment simulation

FIG. 3: comparison of time averaged measurements obtained
from (a) experiments on 2D foams in a Couette cell (b) sim-
ulated foams. v is the tangential velocity rescaled by the wall

velocity v0.
√

v⊥2 is the normal mean square displacement,
associated with a time-lapse τ = 0.25 d/v0, where d is the

average bubble diameter. The rapid drop of
√

v⊥2 in (b) far
from the moving wall is due to the relatively small width of
the simulated foam (W = 16), and hence the presence of the
other confining wall.

Beyond these time averaged measurements, the sim-
ulation allows one to study the evolution of the foam
on short time scales. The dynamics can be separated
into two elementary processes, associated with different
simulation time steps: (i) charge periods over which the
position of the wall is incremented without plastication.
The resulting deformation is linear and the shear stress
tensor uniformly increases. This allows us to extract a
shear elastic modulus µ. This modulus is found to weakly
depend on the total applied strain and is considered as
a constant in the following. (ii) plastic yielding, during
which the stress is relaxed through discrete T 1 events.
To analyze in detail the latter, we focus on the displace-
ment and shear stress fluctuation fields produced by a
single rearrangement. The spatial resolution is enhanced
to below one bubble diameter by averaging these results
over 100 individual T 1 events located at the same yT1

coordinate.
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FIG. 4: Displacement and variational shear stress field asso-
ciated with a single T1 event. Each of these results have been
obtained by averaging over ∼ 100 different T1 events located
at the same distance yT1 from the shearing wall. (a) and
(b): line averaged displacement profiles (expressed in bubble
diameter d), for a T1 event located at yT1 = 3 and 8 re-
spectively. δǫT1 represents the mean strain released by the
T1 event. (c) and (d): Corresponding shear stress variation
fields. Red color indicates an increase of the stress (relative
to the imposed shear stress), blue color indicates a stress re-
laxation. The arrows show approximately the motion of the
rearranging bubbles during the T1 event.

Figure 4 (a) and (b) display the average displacement
profiles associated with T 1 events located at two different
distances yT1 from the lower wall. Both profiles exhibit
a strong discontinuity at the rearranging line whereas
the rest of the material is uniformly deformed with a
strain amplitude δǫT1. Regardless of the position yT1,
δǫT1 = 1.07 d2/(WL) (with a 30% statistical dispersion
over different T 1 events), where d is the mean bubble
diameter and WL is the foam area.

This elementary strain δǫT1
can be interpreted from

two different viewpoints. On one hand, it represents a
plastic strain amplitude: each T 1 event increments the
plastic flow gradient at y = yT1 by −δǫT1 in average.
This yields the following kinematic relation between the
plastic flow profile v(y) and the spatial distribution of T 1
events:

∂v

∂y
(y) = −W ω(y) δǫT1

(2)

where ω(y)dy is the frequency of T 1 events occurring
between y and y + dy. This relation can be directly ex-
hibited by over-plotting the plastic velocity gradient on
the T 1 spatial distributions (see Fig. 2(c)). On the other
hand, δǫT1

is a uniform elastic strain relaxation. The
associated stress can be independently evaluated using
Eq. (3) yielding a line-averaged uniform stress release
δσT1 = µδǫT1. By taking into account both the elastic
charge and T 1 relaxation, we derive an equation of evo-
lution of the line-averaged shear stress σ(y), valid for any
line y between 0 and W :

µγ̇ − µδǫT1

∫ W

0

ω(y′)dy′ =
∂σ(y)

∂t
= 0 (3)

The first term of the left-hand side of the equation
corresponds to the advective charge induced by the
imposed shear at strain rate γ̇. The second term comes
from the cumulative relaxation of stress associated with
the T 1 processes. The integral form of this equation
is a direct consequence of the long range mechanical
relaxation associated with each T 1 process. As a result,
this line-averaged mechanical analysis can not allow one
to predict a flow profile, and is in fact strictly equivalent
to Eq. (2) from which it can be deduced by simple
integration. In other words, any velocity profile which
obeys the kinematic boundary conditions is mechanically
admissible.

The understanding of the shear-banding instability fi-
nally comes down to the following question: All lines
bearing in average the same stress, why are T 1 events
unevenly distributed amongst them? To capture this pro-
cess, we need to go beyond the line-averaged analysis and
examine the spatial structure of stress release associated
with individual T1 events. This is shown in Fig. 4 (c) and
(d), for two different yT1 locations. As it appears clearly,
the stress release is very inhomogeneous and anisotropic,
owing to the systematic displacement pattern of the re-
arranging bubbles imposed by the shearing [8, 18]. In
particular, lines in the vicinity of the rearranging site ex-
perience large stress modifications. Although the global
effect is a release of the main shear stress, some regions
(which appear in red) get over-charged. By contrast, re-
mote lines are homogeneously relaxed.

From this measurement, one may expect that T1
events do not only relax the global stress but also cu-
mulatively modify the statistical properties of the frozen
stress field. To investigate this effect, we measure the
shear stress distributions P (σ(x, y)) at different distances
y from the shearing wall. We extract from these distribu-
tions the local variances ∆σ2(y) = 〈(σ(x, y) − σ)2〉. We
then compare these profiles obtained from foam struc-
tures before shearing and after full localization. As shown
in Fig. 5, the shearing induces an inhomogeneous modi-
fication of these profiles: a large increase of ∆σ2 occurs
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in the shear band region where many T1 events have oc-
curred, in both the experiment and the simulation. By
contrast, the stress distributions in lines away from the
shear band display no modification, or even a small de-
crease of their variance. The latter is due to T1’s occur-
ring during the transient period of charge which do not
have a systematic orientation. We therefore postpone the
discussion of this effect.
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FIG. 5: Profile of shear stress variance 〈(σ(x, y)−σ)2〉 in real
(left) and simulated (right) foams. Solid lines correspond to
foams in the fully localized regime. Dashed lines correspond
to freshly prepared samples (no shearing). All data have been
rescaled with the long time limit shear stress. Inset : shear
stress probability distributions at lines y = 1 (solid) and y =
10 (dashed) respectively, in the localized regime.

This result shows that the strain history of the foam
is permanently imprinted in its frozen stress field, and
that such modification can be directly probed through
measurements of ∆σ2. This parameter has a further im-
portant physical meaning: large values of ∆σ2 indicate
that a large fraction of bubbles are highly deformed and
therefore more likely to rearrange upon increasing the
global stress. This parameter thus provides a local mea-
surement of the foam “fragility”.

Based on these observations, a simple scenario for
strain localization in quasi-static shearing can be
proposed. Starting with a homogeneous structure,
shear-banding develops through a self-amplification
process: T 1 events locally weaken the foam structure
by increasing its frozen stress disorder. This in turn
enhances the probability for subsequent rearrangements
to take place in neighboring lines. This mechanism
spontaneously leads to the formation of a single shear-
band in the material. Within this scheme, we can also
qualitatively understand why shear-bands preferentially
develop along the boundaries, even in plane parallel
shearing geometry where the average shear stress is
uniform. Indeed, the presence of a rigid boundary with a
no-slip condition imposes an extra mechanical constraint
to the foam in the vicinity of the walls. This tends to
locally enlarge the local stress distributions.

The experimental and numerical systems studied here
provides an ideal model to study plasticity in disordered

media. It allowed us to access detailed mechanical fea-
tures, from the stress signature associated with a sin-
gle plastic event, to the statistical modifications of the
frozen stress field associated with a fully developed shear
flow. We have used these results to propose a simple sce-
nario for shear localization based on a strain weakening
process. Most results obtained with this model system
should remain valid to any material provided the exis-
tence of (i) frozen disorder (no thermal relaxation), (ii)
elastic behavior at low deformation, (iii) local discrete
plastication processes. It could therefore serve as a useful
test to more elaborated models of plasticity that involve
local stress relaxations [1, 8, 19] but do not necessarily
address foam rheology.

We wish to thank J. Scheibert, C. Caroli, O. Pouliquen
and J.-M. di Meglio for stimulating discussions. We are
grateful to C. Fond for introducing us to finite elements
calculation.
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