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Contact Dynamics in a Gently Vibrated Granular Pile
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We use multispeckle diffusive wave spectroscopy to probe the micron-scale dynamics of a water-
saturated granular pile submitted to discrete gentle taps. The typical time scale between plastic events is
found to increase dramatically with the number of applied taps. Furthermore, this microscopic
dynamics weakly depends on the solid fraction of the sample. This process is largely analogous to
the aging phenomenon observed in thermal glassy systems. We propose a heuristic model where this
slowing-down mechanism is associated with a slow evolution of the distribution of the contact forces
between particles. This model accounts for the main features of the observed dynamics.
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FIG. 1. Evolution of the packing fraction for four experimen-
tal runs. Each run consists of a first step in which high
amplitude taps allow rapid compaction of the sample, followed
by a sequence of gentle vibrations, during which the internal
dynamics is probed. The arrows indicate the change in tapping
intensity, which occurs after (+) 0, (�) 50, (�) 150, (4) 8000
‘‘tap,’’ which consists of a train of square wave vibrations
of frequency 1 kHz and duration 100 ms. Different applied

high impulsion pulses. There is a systematic error of 2% on the
measurements of the packing fraction.
Internal contact forces in dense granular systems are
very inhomogeneous [1,2], even for crystalline assem-
blies [3]. The stress at a given contact can change macro-
scopically following a relative displacement of the two
particles on the order of microns. Hence, large modifica-
tions in the contact forces field can result from minute
deformations of the pile. This phenomenon is crucial in
understanding the catastrophic yielding occurring in
granular systems submitted to a slowly varying stress
(avalanches [4], shear bands in triaxial tests [5]). It also
explains why the sound transmission through a granular
sample can be strongly affected by very small deforma-
tions [6]. To probe the evolution of the internal stress
field, one needs to measure forces directly [7,8] which is
difficult in 3D. In this Letter, we propose a different
approach: we use multispeckle diffusive wave spectros-
copy (MSDWS) to measure particle displacements on
micron scales in a pile submitted to gentle discrete taps.
These vibrations are too weak to induce large-scale re-
arrangements which would eventually lead to a compac-
tion of the granular system [9–11]. We can therefore
evaluate the microdynamics of the contacts without sig-
nificantly perturbing the packing structure.

We use glass beads of diameter 45� 2 �m, contained
in a glass cell (30 mm� 10 mm� 2 mm). To reduce
electrostatic forces and avoid any capillary attraction
due to moisture, the granular system is fully saturated
with pure water. During the experiment, the mean pack-
ing fraction � is obtained by measuring the position of
the upper surface of the pile with a charge-coupled device
(CCD) camera. Although a systematic error of 2% cannot
be avoided, this allows us to detect relative changes in �
as small as 0.01%. To produce motion in the pile, we use
a piezoelectric actuator on which the cell is rigidly
mounted. Vertical vibrations of precisely controlled am-
plitude, shape, and durations can thus be applied to the
granular column. In the present experiment we focus on a
single type of mechanical excitation, later referred to as a
0031-9007=04=92(3)=035501(4)$22.50 
voltages are used, yielding various vertical amplitudes
ranging from 50 to 300 nm.

In a standard experimental run, the pile is prepared by
turning the cell upside down and then allowing the par-
ticles to sediment for half an hour. This procedure yields
reproducible structures of low volume fraction. The pile is
then submitted to high amplitude taps (of vertical ampli-
tude 300 nm) until it reaches a prescribed packing frac-
tion �s. This first step is a way to obtain granular samples
of given packing fractions with essentially the same
preparation history. We then start probing the dynamics
of contacts by submitting the cell to very gentle taps of
amplitude 50 nm (Fig. 1). During the compaction stage,
the evolution of the packing fraction � with the number
of taps is consistent with previous experimental results on
dry granular systems [9–11]. It should be noted however
that the packing fraction we reach is well above the close
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packing limit expected for a fully disordered pile (’0:64).
This indicates that crystallization does occur in our sys-
tem under strong vibration. In contrast, the low intensity
vibrations do not induce significant further evolution of
the packing fraction except for initially very loose packs.

To probe the microscopic dynamics induced by these
gentle taps, we use MSDWS [12,13]. This technique,
which allows one to resolve submicron displacements,
has been successfully applied to granular dynamics by
several groups [14,15]. The sample is illuminated with a
He-Ne laser beam at a depth of 2 cm below the upper
surface of the pile (1 cm over the bottom). Photons are
multiply scattered by the particles [16] and form a
speckle pattern on the opposite cell wall which we record
with a CCD camera. In the absence of vibration, the
speckle image does not change in time as temperature
is insignificant for such large objects. In contrast, the taps
induce some irreversible particle displacements which
modify the speckle image. To quantify the internal dy-
namics, we measure the intensity correlation of speckle
images, taken between taps, as a function of the number
of taps t that separate them. This function generally
depends on the total number of small amplitude taps tw
that have been performed. We therefore calculate the two-
times correlation function g�tw; t�:

g�tw; t� �
hI�tw 	 t�I�tw�ispkl � hI�tw�i

2
spkl

hI�tw�2ispkl � hI�tw�i2spkl
: (1)

In this expression, h ispkl denotes the average over different
speckles. MSDWS thus allows one to rapidly access re-
laxation time by substituting time with space averaging
and is therefore well suited to the study of nonstationary
dynamical systems.

Figure 2 shows three correlation functions obtained
with the same sandpile at different values of tw. These
functions are well fitted by stretched exponentials:
g�tw; t� � exp���t=��tw����tw��.

For different packing fractions, we follow the evolution
of the dynamics by monitoring ��tw� and ��tw� as a
g(
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)
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FIG. 2. Three different correlation functions obtained after
three different times tw. Solid lines correspond to experimental
values and dashed lines to the stretched exponential fit.
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function of the total number of gentle pulses tw. We find
that the exponent � is roughly constant ( ’ 0:8� 0:2) and
independent of the packing fraction �s. In contrast, the
time ��tw� increases by five decades over the range of tw
explored, as shown in Fig. 3. This result demonstrates that
the response of a granular system to small perturbations
is strongly dependent on the history of its preparation (the
number of applied taps tw) and rather insensitive to the
packing fraction. Conversely, the dynamics can be en-
tirely reset by submitting the system to a few taps of large
intensity (such as those used for compacting the sample).
A careful examination of the ��tw� curve also reveals
large fluctuations in the internal dynamics, especially in
looser packs in which the packing fraction slowly evolves.
During certain periods of time, the dynamics is restarted
as shown by a sudden decrease of ��tw�. This may corre-
spond to catastrophic failures of the pack structure,
which compete against a global reinforcement of the
granular contacts.

The dynamical arrest observed here is strongly remi-
niscent of the aging behavior recently exhibited in vari-
ous glassy colloidal systems [18–20]. In these materials,
the longest (�)-relaxation time is found to grow as a power
law of the time since the system was left to rest after rapid
shearing. Here, the large fluctuations of ��tw� do not allow
one to definitely claim a power-law behavior, especially
for low density samples, but the overall evolution of ��tw�
is compatible with this standard result. This analogy is
surprising considering the differences in the microscopic
processes underlying the dynamics in both systems: in
glassy liquids, stress relaxation occurs by thermally acti-
vated rearrangements of the structure. In granular mate-
rials, temperature is effectively zero and relaxation
results from the local yielding of contacts triggered by
externally applied vibrations.

We now turn to a tentative microscopic model to cap-
ture this slowing-down process. We first need to connect
FIG. 3. Evolution of the dynamical time � with the number of
low magnitude taps tw for different packing fractions �s.
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DWS measurements to a grain-level description of the
dynamics. We note that only the irreversible grain dis-
placements produced by slippage events are responsible
for the speckle image decorrelation. Since we do not
observe significant compaction in the low vibration re-
gime, the amplitude of these displacements ought to be
much smaller than the diameter of the grains. Assuming
that they are uniformly distributed in space and have a
unique characteristic amplitude, ��tw� is simply propor-
tional to the inverse of the yielding frequency [17,23].

The observed dynamical arrest is rather insensitive to
the packing fraction of the sample. Any satisfactory
description thus requires the introduction of another in-
ternal variable that will control the instantaneous re-
sponse of the pack to gentle vibrations. Here we propose
to focus on contact stress distribution. It has been ob-
served that the form of this distribution is almost inde-
pendent of the volume fraction of the pack and the
preparation history [1–3]. However, standard measure-
ments are not sensitive enough to detect small variations
in these distributions that may follow from very gentle
mechanical vibrations. We will argue here that the ob-
served evolution of the dynamics follows from a slow
modification of the stress distribution which effectively
strengthens the granular pile.

To model such a dynamics, we picture the granular
assembly as a set of independent contacts (whose total
number is supposed to be a constant.) Each contact is
characterized at time t by the normal and tangential
component of the contact force which we denote n and
t, respectively. Mechanical equilibrium imposes that
t < �n. For simplicity, we will make the friction co-
efficient � equal to 1 in the rest of the Letter. For a given
packing structure, the state of the internal stress field is
characterized by the two variables stress density distri-
bution P�n; t�. As the cell is vibrated, mechanical
waves traveling through the sample induce random stress
fluctuations at each contact. Such perturbations can lo-
cally trigger the rupture of a contact, whenever the shear
force t overcomes the normal force n. We assume an
exponential distribution ���� of the maximum force
fluctuation induced by the tap on each contact:

���� �
1

�
exp

�
�
�

�

�
: (2)

In this expression, the mean force fluctuation � is an
increasing function of the applied vibration amplitude.
Thus the probability for a given contact to yield following
a single tap writes

!y�n; t� � exp

�
�
n � t

�

�
: (3)

This expression is a consequence of the peculiar form
[Eq. (2)] taken for the tap induced force fluctuations
����. However, the main results of the present model
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remain valid for any fast decaying distribution (faster
than a power law).

After a yielding event, the force at the renewed contact
is chosen from a given ‘‘rejuvenated’’ distribution which
we consider intrinsic to the system. The distribution of
normal forces in a granular pile under a moderate load is
known to exhibit an exponential tail at high forces and a
plateau below the mean force [1–3]. Numerical measure-
ments have also shown that, for a given value of the
normal force, the tangential forces are uniformly distrib-
uted between 0 and the sliding limit t � �n (in a 2D
case) [21]. We use these different observations to infer the
form of the rejuvenated distribution Prej�n; t�, which
thus writes

Prej�n; t� �
1

0 � n
exp

�
�
n

0

�
; (4)

where 0 is the mean stress inside the pile. For simplicity,
we have omitted the plateau saturation of the distribution
at low forces. We can now derive the dynamical equation
of evolution of the stress distribution P:

@P�n;t�

@t
�� P�n; t�!y�n; t�b

	 Prej�n; t�F�P�; (5)

where F�P� is the total frequency of sliding events which
is self-consistently defined as

F�P� �
ZZ

0
t<0

n

P�
0
n; 

0
t�!y�

0
n; 

0
t�d

0
nd

0
t: (6)

The present description exhibits many common fea-
tures with Bouchaud’s trap model [22] of glass transition.
In the latter, the internal dynamics of a glassy liquid is
pictured as a succession of thermal escapes from energy
wells of various depths. In an analogous way, each contact
here can be considered as frozen in a mechanical trap (the
local solid friction cone), the depth of which depends on
the relative amplitude of the normal and shear compo-
nents of the contact force. Moreover, in the absence of
temperature, mechanical vibrations play the role of the
energy source by allowing individual contacts to hop out
of their trap.

As in the trap model, we thus observe two limiting
regimes depending on the relative values of the intensity
of the applied stress � and the width 0 of the rejuven-
ated distribution. For large vibrations, i.e., � > 0, the
rejuvenated stress distribution is a stationary solution of
Eq. (6), and the yielding frequency is constant in time. In
contrast, for �< 0, the stress distribution evolves
endlessly. Figure 4 shows the time evolution of P ob-
tained by numerically solving Eq. (6) for � � 0=20,
starting with P � Prej. It shows that fragile contacts —
contacts of low normal force or close to the sliding limit
(inset) — are slowly depleted. As a result, the number of
sliding events per time unit decays. More quantitatively,
035501-3
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FIG. 4. Results of the numerical model for 0 � 1 and � �
0=20: (a) distributions of normal forces for tw � 1, 10, 100,
1000, and 10 000 (from left to right); (b) distributions of
tangential forces for n � 0 at the same times tw (from
bottom to top).
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we find that the characteristic time between events grows
linearly with the elapsed time, in reasonable agreement
with our observations (Fig. 3.)

We have evidenced, through MSDWS measurements,
the existence of a slowing down of the microscale dy-
namics over more than five decades in gently vibrated
granular piles. This behavior is reminiscent of the aging
process observed in glassy systems. This dynamics ap-
pears to be weakly connected to the overall grain-scale
structure, which suggests a two-level description of
granular systems. Under strong vibrations, a granular
pile evolves through the restructuration of the piling
geometry, leading to a slow irreversible compaction. In
this regime, the forces network is rapidly renewed and
shows no history-dependent behavior. Under gentle vibra-
tions however, the geometry of the pile is essentially
frozen but the forces network can still evolve by slowly
depleting the most fragile contacts. This leads to an
effective reinforcement of the pack structure as is evi-
denced in the present study by the decrease of vibration
induced plastic events.

The precise nature of the yielding events remains how-
ever unclear. In particular, one might expect large spatial
and temporal correlations between the events, which we
cannot probe with DWS. Another important question
concerns the relevance of such modifications to the on-
set of macroscopic flow. For instance, does the ob-
served reinforcement of the force networks play a role
in changing the threshold of avalanche triggering or
shear-banding appearance?

We wish to thank Luca Cipelletti and Jean-Marc di
Meglio for fruitful discussions and Deniz Gunes for help-
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