
J. Fluid Mech. (2007), vol. 587, pp. 23–44. c© 2007 Cambridge University Press

doi:10.1017/S0022112007007264 Printed in the United Kingdom

23
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A quasi-static simulation is used to study the mechanical response of a disordered
bidimensional aqueous foam submitted to an oscillating shear strain. The application
of shear progressively extends the elastic domain, i.e. the strain range within which no
plastic process occurs. It is associated with the development of an irreversible normal
stress difference, and a decrease in the shear modulus, which are both signatures of the
appearance of anisotropy in the film network. Beyond this mechanical measurement,
the evolution of the structural properties of the foam is investigated. We focus in
particular on the energy E0 defined as the minimum line-length energy under zero
shear stress. For strain amplitude less than ∼0.5, this quantity is found to decay
with the number of applied cycles as a result of the curing of topological defects.
However, for higher strain amplitude, plastic events appear to increase the structural
disorder and tend to gather near the shearing walls. This process is a precursor of
the shear-banding transition observed in fully developed flows, which will be studied
in the companion paper. Movies are available with the online version of the paper.

1. Introduction
The rheology of soft glasses has been the subject of an increasing number of

studies in the last two decades. This class of systems includes macroscopically divided
materials such as foams, concentrated emulsions, colloidal suspensions or dense
granular packings, but also multicontact frictional joints (Baumberger & Caroli
2006) or dense assemblies of vertices in class II superconductors (Fisher, Fisher &
Huse 1991). As in a molecular glass below Tg , the thermal energy in these systems
is low compared to the energy barriers for structural relaxation. In the case of
macroscopically divided systems such as foams, the thermal energy is effectively zero:
in the absence of external stress, the system is trapped in a metastable configuration.
(by contrast with glassy systems, where ageing refers to thermally induced dynamics,
the same term is used for foams to describe non-thermal effects, such as coarsening,
coalescence or drainage). This results in the existence of a finite yield stress below
which the material responds elastically. When a larger stress is imposed, it triggers a
series of plastic events which release the applied stress, yielding a macroscopic flow.

This particular mode of stress relaxation has a number of rheological consequences.
First, it allows for the existence of a quasi-static regime of flow when the inverse of the
strain rate is much larger than the relaxation time associated with the plastic event
(Khan, Schnepper & Armstrong 1988; Rouyer, Cohen-Addad & Holler 2005). In this
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regime, the stress/strain curve shows an initial quasi-linear regime. Beyond this initial
charge, the stress signal, measured on small systems, is intermittent: it exhibits a series
of linear increases interrupted by rapid drops associated with the successive plastic
events. Another characteristic feature of these systems is the so-called strain-induced
ageing process: the dynamical properties continuously vary with the application of a
moderate shear (Viasnoff & Lequeux 2002). This indicates that even a low strain can
trigger a few plastic events which modify the microscopic structure, that controls, in
turn, the macroscopic mechanical response (Bureau, Baumberger & Caroli 2002).

Numerous models have been proposed to interpret this set of observations. Some
of them, inspired or derived from glass theory, introduce a parameter which plays
the role of a temperature in order to recover a thermodynamical description (Sollich
et al. 1997; Liu & Nagel 1998). This so-called ‘effective temperature’ is generally
described as a function of the flow field itself. It results in a shear dependent fluidity
which has been directly postulated in Derec, Ajdari & Lequeux (2001). Although such
models may reproduce the phenomenology of the rheology, they lack a convincing
description of the local mechanisms which would justify the proposed form for the
effective temperature and its coupling with the flow. An alternative approach, inspired
by the pioneering work of Bulatov & Argon (1994a–c), has been proposed by Falk &
Langer (1998). They observe in a numerical simulation of amorphous and athermal
systems of interacting spheres, that plasticity is associated with discrete and local
rearrangements involving a few particles. This observation is at the base of the
STZ (shear transformation zone) model, which links a microscopic description of
the plastic event to the macroscopic rheology. All these models aim to relate the
micro-structural state and its evolution with the applied strain and strain rate. A
system where one can follow both the micro-structure and the rheology is required in
order to further test and refine these different approaches.

Liquid foams constitute a convenient model system to study plasticity in solid
materials. It allows us to monitor directly the deformation of a crystalline or disordered
structure at the level of its individual components, as was first recognized by Bragg
& Nye (1947) who used crystalline bubble rafts as a tool for understanding the
dynamics of dislocations in metals. Foam coarsening – the bubble disproportionation
induced by gas diffusion between neighbouring bubbles – can be viewed as a process
analogous to grain growths in metals (Weaire & Kermode 1984). Disordered foams
have proved to be a rich heuristic system for the study of glassy rheology (Sollich et
al. 1997; Liu & Nagel 1998).

Two-dimensional foams have been particularly investigated both experimentally
(Dennin & Knobler 1997; Abd el Kader & Earnshaw 1999; Debrégeas, Tabuteau &
di Meglio 2001; Lauridsen, Twardos & Dennin 2002; Cantat & Delannay 2005; Dollet
et al. 2005) and numerically (Weaire & Kermode 1983; Herdtle & Aref 1992; Okuzono,
Kawasaki & Nagai 1993; Reinelt & Kraynik 1996; Kabla & Debrégeas 2003; Vincent-
Bonnieu, Hohler & Cohen-Addad 2006) as they allow for simple handling, observation
and modelling. Along this line, we have developed a quasi-two-dimensional foam
system which consists of a monolayer of bubbles confined between two horizontal
plates (Debrégeas et al. 2001). Using a numerical foam simulation, a similar flow
behaviour was evidenced in plane parallel shear (Kabla & Debrégeas 2003). In
spite of the apparent simplicity of these two-dimensional systems, several aspects of
their rheological behaviour are still highly debated (Wang, Krishan & Dennin 2006;
Janiaud, Weaire & Hutzler 2006).

In this paper and in Part 2 (Kabla, Schéibert & Debrégeas 2007), we attempt to
understand the connection between the mechanical properties and the structural state
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Figure 1. (a, b) A T1 event observed in a confined two-dimensional foam (Debrégeas et al.
2001). This elementary plastic process involves a neighbour exchange between 4 bubbles
indicated by the letters in the two pictures. (c) The numerical two-dimensional foam used in
the present study. Shearing is obtained by incrementally moving the lower (rigid) boundary as
indicated by the arrow. The foam is periodic along the shear direction. (d) Area distribution
of the bubbles.

of a foam under two types of solicitation. Following the work of Weaire & Kermode
(1984), we study in this paper the response of a foam to an oscillating strain, using
the code developed in Kabla & Debrégeas (2003). In Part 2, we investigate fully
developed shear flow, experimentally and numerically.

2. Numerical model
The wetness of a bidimensional foam is characterized by the area fraction of gas

Φ . For Φ > 0.86, the foam exhibits a finite yield stress. Here we focus on the limit
of dry foams Φ ∼ 1. In this regime, the foam is composed of polygonal bubbles
separated by thin liquid films (Weaire & Hutzler 1999). Three films intersect in
regions called vertices, where most of the water is present (see figure 1a). Plasticity
in two-dimensional dry foams arises through rapid local neighbour-switching events
called T 1 processes (figure 1a, b).

Several models have been developed to describe the flow behaviour of two-
dimensional dry foams at finite shear-rate (Q-Potts models (Jiang et al. 1999); vertex
model (Okuzono et al. 1993; Okuzono & Kawasaki 1995). The quasi-static algorithms
(Weaire & Kermode 1983; Herdtle & Aref 1992; Weaire & Hutzler 1999), based on
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the time-scale separation between the short duration of the plastic events τT 1 and the
long characteristic time of shearing, provide a realistic description of the dynamics.

When the time scale associated with the imposed strain is large compared to the
rearrangement time, the foam is at any time mechanically equilibrated (except during
the rapid rearrangements). The foam structure minimizes the static free energy of the
foam: for incompressible bubbles, this energy is proportional to the total film length.
(The state equation of the gas is a priori necessary. However, for millimetric bubbles
and typical surface tensions, the resulting relative changes in volume are negligible
and the bubbles can be assumed incompressible.) Vertices have a typical size dv set
by the amount of water in the foam (figure 1). When the distance between two
vertices is close to dv , the foam becomes unstable and bubbles rearrange (T1 event,
see figure 1a, b). The quasi-static shear simulation developed here is based on these
arguments, and involves a loop over three main steps: (i) Compute the geometrical
foam structure for the current bubble arrangement (the neighbouring relation between
bubbles): the total film length is minimized under prescribed boundary conditions
(described later) and a constraint of constant bubble area. (ii) The stability of the
resulting structure with respect to topological rearrangements is then tested: if a film
length falls below a threshold value (chosen to correspond to a gas fraction Φ = 0.99),
we modify the foam topology to account for the T1 event triggered (as in figure 1a, b).
The minimal line-length structure is then recalculated. Steps (i) and (ii) are repeated
until the structure is stable with regard to plastic events. (iii) A small increment of
deformation is then applied, and the whole process of relaxation is started again.
It should be stressed that this quasi-static model does not involve any description
of the fast energy dissipation during the T1 process. This is correct as long as T1
events are well separated in time. It might, however, inaccurately describe situations
where large avalanches occur (Weaire & Hutzler 1999). In this study, processes such
as coarsening, coalescence or drainage are not taken into account.

The initial foam is created from the Voronoi tessellation of a disordered set of
points (Weaire & Hutzler 1999), obtained by superimposing a Gaussian random
displacement to an hexagonal lattice. The noise amplitude is used to tune the
distribution of the resulting bubble areas. In this paper, the dimensions of the foams
are Lx × Ly =1.5 × 1, the system is periodic along the x-direction (see figure 1c). The
upper and lower boundaries of the tessellation define the rigid walls. Their rough
shape is preserved during the whole simulation. In this study, around 400 bubbles
are packed between the two parallel walls. Their area distribution is presented in
figure 1(d). In our unit system, the mean area and the standard deviation are,
respectively, around 4 × 10−3 and 1 × 10−3.

The energy minimization consists in the determination of the vertices positions and
film curvatures which correspond to a minimum of the total line length. To reach this
configuration, we use Surface Evolver (SE) Brakke (1992), a minimization software
which has proved to be reliable for the computation of foam structures (Reinelt &
Kraynik 2000; Kraynik, Reinelt & van Swol 2003). The conjugate gradient algorithm
of SE rapidly ensures a locally equilibrated structure by computing the forces on each
vertex and projecting the resulting trajectories along constraints (constant volume
here). However, for extended networks, a large number of iterations is required in
order to relax the soft modes of deformations associated with large- length-scale
deformation fields. To bypass this limitation, the minimization process is separated
into two distinct steps. (i) The foam structure is first reduced to a set of vertices
connected by straight lines. The energy landscape associated with the structure is
probed by imposing large-length-scale incompressible deformation fields, such as
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Figure 2. (a) A foam sample (16 × 24 bubbles) submitted to an imposed strain of amplitude
ε. (b) The oscillating strain sequence imposed to the foam in a typical experiment: t is the
number of cycles and εmax is the maximum strain amplitude. Movies corresponding to these
simulations are available with the online version of the paper.

elementary shear or local rotation. When one of these strain fields decreases the total
line-length energy, the associated displacement of the vertices is implemented. Details
of this method are provided in the Appendix. (ii) When this minimization process
has converged, the structure is progressively refined by adding degrees of freedom
along the edges (up to eight points per edge). The energy minimization leads then
to a structure satisfying the Plateau rules, which imply that three films meet at 120◦.
All the different physical quantities studied in this paper are measured on this final
structure. This method allows us to study minute global deformation such as those
observed in experiments (Debrégeas et al. 2001).

Shearing is imposed by progressively moving the lower wall from left to right,
by small shear strain increments of 0.5 %. (This number ensures that each strain
increment will trigger by itself at most one T1 event, although this first event might
trigger further ones.) As expected in the quasi-static regime, moving the lower wall
is strictly equivalent to moving the upper wall in the opposite direction. Hereinafter,
lengths are scaled by the width Ly of the shearing gap, so that the displacement d of
the lower wall is also the mean strain ε = d/Ly . It should be noted that ε is the only
control parameter for this study.

3. Quasi-static rheology
In this study, the foam is submitted to a shear strain oscillating between two

symmetrical limits εmax and −εmax. As physical time is irrelevant in the quasi-static
regime, any monotonic trajectory can be used to move the walls from one limit to
the other. Along the lines of earlier similar studies (Weaire & Kermode 1983), we
simply used, without a loss of generality, piecewise linear displacements of the walls.
The evolutions of different structural and mechanical parameters are monitored as a
function of the fractional number of applied cycles t (figure 2).

3.1. Stress–strain relationship

The coarse-grained shear stress over any subregion D of the sample can be extracted
from the structure of the foam by using the following equation (Kraynik et al. 2003):

σxy(D) =
γ

A(D)

∑
films i

li,x · li,y
li

. (3.1)
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Figure 3. (a) Imposed strain (dashed lines) and shear stress (solid lines) as a function of t
for different strain amplitudes εmax (a magnification of 0.1 has been imposed to the stress
measurements for clarity). The inset is a zoom of the first charge for εmax = 0.3. (b) Hysteresis
cycles for different amplitudes. When εmax < 0.5, the behaviour becomes purely elastic after a
transient of one or two cycles. (c) Energy dissipated per cycle in the permanent regime as a
function of the shear strain amplitude.

The sum is performed over all the films lying within the subregion D of area A(D). li
is the length of the film, li,x and li,y are the projected lengths over the horizontal and
vertical axis, respectively. Hereinafter, the line tension γ of the liquid film is set to 1.

By performing this calculation over the entire sample, the evolution of the total
shear stress σxy exerted by the moving walls can be monitored. This quantity is shown
in figure 3(a) as a function of the number of cycles t for different values of εmax (dashed
lines indicate the imposed strain). These graphs illustrate the elasto-plastic behaviour
of foams under quasi-static shear: under low strain, the stress–strain relationship is
linear. For imposed strain εmax � 0.5, the stress reaches a yield value σY . However,
careful examination of the graphs reveals the occurrence of plastic events for stress
values lower than the yield stress, especially during the first charge (inset in figure 3a).
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3.2. Transient, limit cycles and hysteresis

Figure 3 shows the evolution of the shear stress with respect to the imposed strain,
for different strain amplitudes. Consistently with the three-dimensional experimental
measurements of Rouyer et al. (2003), the mechanical response of the foam is modified
by the first cycles of deformation (shear ageing). After a few oscillations, a limit cycle
is reached beyond which no apparent evolution of those properties can be detected.
For a maximum strain εmax < 0.5, no more T1 events occur after one or two cycles.
For εmax � 0.5, some irreversibility persists (figure 3b) and the associated dissipated
energy can be measured by computing the area of the hysteresis loops in the limit
cycle:

�E∞ = A

∮
limit cycle

σxy(ε) dε, (3.2)

where A= LxLy denotes the total foam area. Figure 3(c) shows the evolution of this
quantity for various strain amplitudes. As expected, �E∞ is strictly zero for small
amplitude. In the large-amplitude limit (εmax > 0.5), the dissipation monotonously
increases with εmax, and �E∞ can be described in that regime as an affine function
of the imposed strain, corresponding to the area of the hysteresis cycles:

�E∞ = 4 A σY (εmax − εY ). (3.3)

This allows us to identify a yield strain εY as the maximum strain that the foam
can sustain elastically. Beyond the yield strain, the foam flows under a well-defined
shear stress, corresponding to the foam yield stress σY (Khan et al. 1988). It should
be noted, however, that these quantities are not intrinsic to the material: they may
depend on the specific structure (the particular arrangement of the bubbles) of the
foam, as well as its dimension.

In standard rheological measurements, this nonlinearity is expected to show up as a
dependence of the complex shear modulus G =G′ + iG′′ with the strain amplitude at
vanishingly small shear rates (Rouyer et al. 2005 and references therein). Considering
that the energy dissipated per cycle can be written as �E ≈ G′′ε2

max, we expect the
loss modulus to depend on the strain amplitude as:

G′′ ∝ σY

εmax − εY

ε2
max

, (3.4)

for strain amplitudes larger than the yield strain εY ; G′′ should be null otherwise. This
relation appears to be in good agreement with Rouyer et al. (2005) for imposed shear
strain larger than the yield strain. For lower strain, the dissipation is dominated by
coarsening-induced T1 events (Weaire & Hutzler 1999), which is not included in our
model: this regime has been investigated numerically by Vincent-Bonnieu et at. (2006).

3.3. Development of normal stress difference

Development of normal stress difference upon shearing is commonly observed in
a broad range of systems, from hyperelastic materials to complex fluids such as
polymer solutions; it is in particular a characteristic feature of foams rheology (Khan
& Armstrong 1986; Reinelt 1993; Reinelt & Kraynik 1996; Larson 1997; Hohler,
Cohen-Addad & Labiausse 2004). In this section, we analyse the effect of shear-
induced plasticity on normal stress difference, and focus on the regime of large
applied strain (εmax = 1). Figure 4 shows the first normal stress difference σxx − σyy as
a function of the number of cycles t and of the shear stress σxy . These graphs illustrate
the strong coupling between these two quantities: the normal stress difference can
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be empirically described as a quadratic function of σxy with an offset �σn,0 being a
function of the number of cycles t:

σxx − σyy = �σn,0(t) + βσ 2
xy. (3.5)

The quadratic term is expected from the elastic deformation of the film network
(Khan & Armstrong 1986), as will be detailed in the next section. In contrast, the
offset corresponds to a permanent imprint in the material. To quantify the latter, the
normal stress difference under zero shear stress �σn,0 is evaluated by extrapolating the
parabolic sections of the graphs of figure 4. As shown in figure 5, this quantity, plotted
as a function of the number of applied strain cycles, exhibits (sample dependent)
fluctuations about a slow global increase. This global increase cannot be explained
by the elastic response, even with the nonlinear correction, as it occurs under zero
shear stress. It is a signature of the structural evolution experienced by the foam
under shear. This ability of foams to develop permanent normal stress difference is at
the origin of the spatial heterogeneities of this mechanical quantity observed in real
two-dimensional foams by Janiaud & Graner (2005).
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3.4. Energetic approach

In order to further investigate the modification of the structural properties of the
system under shear, we consider the evolution of the foam free energy (total line-
length) with the imposed strain ε (figure 6). For the lowest strain amplitude, εmax =0.1,
no rearrangement occurs during the first cycle of charge and discharge. The strain is
reversible and the stress is a linear function of the strain. The following charge in the
opposite direction generates one T1 event which induces a transition to a different
energy basin.

The evolution of the system under shear can thus be seen as a series of
transitions, induced by discrete plastic events, in a multistable potential landscape.
Each configuration is associated with an elastic basin whose properties can be
accessed by a quadratic extrapolation of the local energy versus deformation curve.
The extrapolation must be performed in the elastic domain of response, in which
no rearrangement takes place, and thus becomes increasingly inaccurate when the
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applied strain approaches the yield strain limit (figure 6b, c). To bypass this limitation,
a specific numerical procedure is implemented: for every structure successively
reached, a complete shear cycle of amplitude 0.5 is performed in which topological
changes are forbidden. This numerical procedure allows us to produce an extended
elastic basin, as shown in figure 6(d), on which an accurate quadratic fit can be
performed:

E(ε′) = E0 + 1
2
Aµ (ε′ − εplast )

2, (3.6)

where A is the foam area, µ is the shear modulus and E0 is the minimal value of
the energy reached under zero shear stress. These two latter quantities are specific
to the structure and do not depend on the elastically stored shear deformation. It
should be noted that E0 cannot be extracted from mechanical measurements which
only depend on the derivative of the potential. Hereinafter, E0 will be referred to
as the structural energy of the foam. The quantity εplast corresponds to the applied
strain (or to the position of the lower wall) for which the foam energy is minimum
and the shear stress is 0.

Figure 7 shows the evolution of the shear modulus µ and of the structural energy
E0 as the foam undergoes successive strain oscillations. A systematic decrease of
µ is observed with the number of cycles, this effect being stronger for increasing
strain amplitude. This observation is consistent with the experimental rheological
measurements made on three-dimensional foam by Hohler, Cohen-Addad & Asnacios,
(1999). The same behaviour is observed for E0 which indicates the existence of a strain-
induced structural relaxation process. For large shear amplitude, however (εmax > 0.7),
the value of the structural energy exhibits oscillations: its value reaches a maximum
whenever the absolute value of the applied strain is maximum. This behaviour is
associated with the development of heterogeneities in the spatial distribution of the
T1 events, as will be shown later in the paper.
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consists of rectangular cells which deform into parallelograms as the system is sheared.

4. Interpretation
The structural evolution of the foam under moderate shearing (εmax < 0.7) is

associated with (i) the appearance of normal stress difference, (ii) a structural energy
relaxation, (iii) a decrease of the shear modulus. These evolutions result from the
strain-induced topological rearrangements that irreversibly modify the foam structure.
In this section, we attempt to account for these observations by first examining the
effect of the film network anisotropy on both the normal stress difference and the
shear modulus, using a simplified foam model. We then focus on the evolution of
topological disorder to interpret the decrease in the structural energy.

4.1. Shear modulus and normal stress difference

As first recognized by Princen (1983), the main characteristics of foam elasticity can
be understood by considering the film elongation induced by the deformation of a
regular network of liquid films.In order to relate the slow increase of the normal stress
difference under zero shear stress to the softening of the foam, we use in this section
a minimal model based on Alexander’s (1998) square foam model. We consider a
square network of films with dimension Lx × Ly , and surface tension γ . R denotes
the distance between adjacent films in the original (undeformed) structure (figure 8a).
This simplified model only focuses on the elastic behaviour due to film elongation
and reorientation upon shear, and ignores disorder as well as Plateau’s rule which
imposes films to meet at an angle of 120◦. When the network is strained along the
horizontal x-direction, the length of the horizontal films remains unchanged, whereas
the length of the vertical films varies with the shear strain εxy by a quantity:

δl(x) = Ly

√
1 + ε2

xy − Ly. (4.1)

Assuming that each film acts on the structure with a force of intensity γ , simple
geometry allows us to write the different components of the stress tensor to second
order in the applied deformation εxy:

σxy = µ0εxy, (4.2)

σxx =
γ

R

(
1 + ε2

xy

)
= µ0

(
1 + ε2

xy

)
, (4.3)

σyy =
γ

R

(
1 − 1

2
ε2

xy

)
= µ0

(
1 − 1

2
ε2

xy

)
, (4.4)

where µ0 = γ /R is the shear modulus (a better estimate is obtained with a hexagonal
network that takes into account the local equilibrium rule of the liquid films (Princen
1983)). Consisitently with Khan & Armstrong (1986), the quadratic relationship
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between the shear stress and the normal stress difference immediately follows:

σxx − σyy =
3

2

γ

R
ε2

xy =
3

2

σ 2
xy

µ0

. (4.5)

We observed in the previous section the appearance of a finite normal stress
difference under zero shear stress. This indicates that an oscillating strain induces a
relative increase of the average density of films in the shear direction in comparison
to the normal direction. In order to illustrate this effect, we introduce anisotropy in
the previous model (figure 8b) by considering a film network made of parallelograms
of area Rx ×Ry . The equivalent cell size is defined as R =

√
Rx × Ry and the structure

anisotropy is characterized by two geometrical parameters:

axx = Rx/R − 1, ayy = Ry/R − 1. (4.6)

The anisotropy is therefore associated with a pre-strain of the material along the
shear axis. As for the square lattice, we evaluate the mechanical properties of the
foam. The line-length energy is:

E(εxy) = E0 + 1
2
A

γ

R
(1 − axx)ε

2
xy, (4.7)

with

E0 =
2γA

R

(
1 + 1

2
a2

xx + 1
2
a2

yy

)
. (4.8)

The tangent shear modulus is thus:

µ =
1

A

∂E

∂εxy

=
γ

R
(1 − axx). (4.9)

The previous relations show that the anisotropy, or prestrain, affects both the
structural energy E0 and the tangent shear modulus µ. It should be noted that the
modulus µ only applies to shear along the x-direction. This simple model provides a
prediction for the normal stress components as a function of the shear strain εxy and
the anisotropy defined by axx and ayy:

σxx =
γ

R
(1 − ayy) +

γ

R
(1 − axx)ε

2
xy, (4.10)

σyy =
γ

R
(1 − axx) − γ

2R
(1 − axx)ε

2
xy. (4.11)

To first order in εxx , the area conservation (RxRy =R2) imposes that axx + ayy = 0, so
that the normal stress difference under zero shear stress reads:

σxx − σyy =
γ

R
(2axx)︸ ︷︷ ︸
�σn,0

+
3

2

γ

R
(1 − axx)ε

2
xy. (4.12)

By substituting this expression into (4.9), we can derive a relationship between the
normal stress difference under zero shear stress �σn,0 and the shear modulus:

µ = µ0 − 1
2
�σn,0, (4.13)

where µ0 = γ /R is the shear modulus of the equivalent isotropic foam.
This relation suggests testing the correlation between these two quantities measured

in the numerical simulation. The expected proportionality is observed in spite of the
fluctuations of these two parameters (figure 9). It should be noted, however, that the
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Figure 9. Normal stress difference under zero stress �σn,0 (black) and variation of the shear
modulus µ0 − µ (grey) as a function of the number of cycles t , extracted from the numerical
simulation with a strain amplitude εmax =1. The shear modulus variations have been multiplied
by 1.25 to underline the similar evolution of both quantities.

ratio (µ0 − µ)/�σn,0 is of the order of 0.8 in the numerical system instead of the ex-
pected 0.5 predicted by this model. This discrepancy can be accounted for by the
simplicity of the model, which does not take into account either Plateau’s rule or
the polydispersity of the foam. Nevertheless, it illustrates that both quantities reflect
the distribution of the film orientation with regard to the shearing direction. The
strain-induced T1 processes tend to orientate the films in the direction of the shear,
thus driving the structure into an anisotropic state.

4.2. Relaxation of the disorder and transition to the plastic flow

The anisotropic model presented above yields an expression of E0 as a function of the
geometrical parameters axx and ayy (equation (4.8)): this corresponds to the energy
associated with the pre-strain built in by the plastic events. Based on this expression,
we would expect E0 to increase with the imposed maximum strain, in contradiction
with our observations. This model, however, ignores the foam disorder, which can
influence E0 and might evolve upon shearing.

One standard way to evaluate topological disorder in dry foams consists in
measuring the second moment µ2 of the distribution P (n) of the number of films per
bubble (Weaire & Hutzler 1999). In two-dimensional dry foams, the average number
of neighbours per bubble is exactly 6, which yields the following expression for µ2:

µ2 =
∑

n

(n − 6)2P (n). (4.14)

In agreement with previous experimental (Abd el Kader & Earnshaw 1999) and
numerical (Kraynik et al. 2003) studies, moderate shearing produces a partial re-
laxation of the topological disorder (figure 10). By curing topological defects originally
present in the foam, the shearing extends the elastic domain. This shear-strengthening
process has its counterpart in other systems such as dense colloidal glasses or friction
joints (Bureau et al. 2002; Viasnoff & Lequeux 2002; Baumberger & Caroli 2006).
Although the decrease of E0 under low strain can be accounted for by this topological
relaxation, the oscillations of E0 at larger deformation remain unexplained. Neither
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Figure 10. Evolution of the topological disorder. The second moment µ2 of the distribution
of the number of films per bubble is plotted as a function of the number of applied cycles t for
different strain amplitudes εmax. The top graph shows the associated imposed strain sequence.
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Figure 11. Shift of the elastic basin following a T1 event. Two main mechanisms can be
distinguished: (a) relaxation of the structural disorder (mostly during transient regime), and
(b) relaxation of the imposed shear stress.

the anisotropy (measured by the normal stress difference under zero shear stress) nor
the topological disorder (measured by µ2) exhibit a similar behaviour.

In order to understand this process, we must look in more detail at the effect of
T1 events on the energy basin of the foam. When a rearrangement T1 occurs during
the shearing, a certain amount of energy δE is relaxed (figure 6). δE is found to
be systematically of order −γD, where D is the mean bubble diameter. This energy
release may be decomposed into two terms (figure 11):

δE = δE0 − A σxy δεplast . (4.15)

The first term is associated with a relaxation of the structural energy E0. The second
term corresponds to a partial relaxation of the applied shear stress σxy , which induces
a lateral shift in the position of the minimum of the energy basin. The relative value of
the structural and shear stress relaxation strongly depends on the system preparation.
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Figure 12. Positions of the T1 rearrangements across the gap during the shearing, for different
amplitudes εmax. For each T1 event, occurring at the instant t , a cross is placed whose ordinate
corresponds to its distance to the lower wall.

Figures 6 and 7(b) show that, under low deformation (εmax � 0.5), T1 events mainly
relax the structure. At higher imposed strain, the main effect of the rearrangements
is a relaxation of the applied shear stress. When the shear stress becomes high, δE0

(equation (4.15)) can be positive, leading to the increase of E0 observed in figure 7(b):
the stress release occurs at the expense of the structure relaxation. The oscillations
of the structural energy may therefore be understood as a series of shear stress
relaxations (which increase the structural heterogeneities) and disorder relaxations
when the shear stress is reversed.

The transition to plastic flow can also be studied by looking at the spatial distribu-
tion of the rearrangements during shearing (figure 12). For low strain amplitude εmax �
0.5, T1 events are uniformly distributed inside the foam. For higher amplitude in
contrast, they occur preferentially in the vicinity of the walls. These observations
reflect the fact that transient T1 events arise from the relaxation of the homogeneous
initial disorder, whereas plastic events occurring at larger length scales have a more
complex dependence on the system geometry and history. This is, moreover, consistent
with the appearance of a shear band observed under continuous slow shear in a similar
geometry (Kabla & Debrégeas 2003).

5. Conclusion
The response of a two-dimensional foam to an oscillating quasi-static shear exhibits
a transient regime: during the first few shear cycles, various mechanical properties
evolve with time as a result of the shear-induced plastic events.



38 A. Kabla and G. Debregeas

For moderate strain amplitude (εmax � 0.5), the elastic modulus is found to decrease,
and a finite normal stress difference at zero shear stress develops. This evolution is a
consequence of the building up of anisotropy in the film network. The plastic events
reduce the topological disorder as indicated by a decrease of the second moment µ2

of the distribution of the number of films per bubble, and a reduction of the free
energy E0 of the foam at zero shear stress. This results in an enlargement of the
elastic domain, i.e. the range of strain that the foam can sustain elastically.

At larger strain amplitude (εmax � 0.5), a different behaviour is observed: as the
number of plastic processes suddenly increases, they tend to relax the applied shear
stress at the expense of the structural relaxation observed at low shear strain. As a
consequence, the energy E0 increases, and thus exhibits oscillation within a complete
strain cycle. This process is associated with the development of spatial heterogeneities
in the distributions of the T1 processes. Instead of being homogeneously distributed
all across the gap, they tend to gather near the shearing wall. This elastic to plastic
transition will be studied in detail in Part 2 where the fully developed flow regime is
probed, both numerically and experimentally.

The present study shows how the evolution of structural properties can allow us to
understand the shear-history dependence of disordered systems at zero temperature. It
reveals that the applied shear stresses bias the plastic events selection in a non-trivial
way, which leads to the two regimes of relaxation detailed in this paper. Further work
will be required in order to understand this process precisely.

Appendix. Numerical procedure for the energy minimization
A.1. Large-length-scale deformations

Gradient methods, such as that used by Surface Evolver (SE) to minimize the foam
energy, drive the system down the steepest slope of the energy landscape. After each
iteration, geometrical constraints are taken into account by projecting the trajectory
along specific directions. In the case of the SE algorithm, this allows us to ensure that
each bubble area remains constant throughout the process. When a large number
of constraints is imposed, it appears, however, that large-length-scale modes of
deformation are very slowly relaxed by the standard conjugate gradient methods,
leading to a lack of precision in the resulting structure.

In order to evaluate the efficiency of the minimization procedure, we impose large-
length-scale deformations to a film network, and then allow for the energy to relax.
We start with the initial structure shown in figures 13(a) and 13(e), obtained after
a thousand iterations of SE. At this stage, the foam is simply made of straight
edges, with a fixed volume constraint per bubble. We then impose two distinct modes
of deformation: simple shear from the boundary (figure 13b) and large-length-scale
torsion (figure 13f ), which includes rotations and dilatations.

Figures 13(c) and 13(g) show the result of a few thousand iterations of the conjugate
gradient method applied to the deformed structures (we note that for these tests, T1
events are not included in the minimization process). Although all cells then satisfy
the constant volume constraint, the final configuration is still far from equilibrium:
the imposed deformations are clearly visible in the resulting network. More iterations
would lead to a better minimization, but the energy evolves extremely slowly.

In the case of a simple shear, it is usually valid to prescribe, prior to the minimization
steps, a linear displacement field according to the wall position. It guarantees most
of the time that each bubble would start close to its equilibrium position. However,
in cases where the expected flow profile itself is debated, such a ‘guess’ must be
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Figure 13. Tests of the energy minimization procedures. (a–d) Relaxation of a 30% shear
induced by the boundary. (a) Initial configuration after 1000 CG step. (b) Unequilibrated
structure after the wall is moved. (c) Relaxation profile obtained using CG iterations only.
(d) Structure obtained by coupling the gradient descent with soft mode testing. (e–h) Relaxation
of an internal distortion of the foam structure. (e) Initial configuration after 1000 CG step.
(f ) Unequilibrated structure after the wall is moved. (g) Relaxation profile obtained using CG
iterations only. (f ) Structure obtained by coupling the gradient descent with soft mode testing.

avoided since it may induce a bias on the resulting behaviour. Furthermore, it has
been shown that a large part of the relaxation field in sheared foams is associated
with large-length-scale rotating modes (Debrégeas et al. 2001). A realistic algorithm
should therefore be able to correctly relax these soft elastic modes.

We must thus use purely energetical approaches to guarantee that, after an in-
cremental shear deformation or a T1 event, the structure is entirely equilibrated over
the system size.

A.2. Elementary test deformations

In order to achieve a proper minimization, we use (in addition to the conjugate
gradient method) a Monte-Carlo type algorithm which tests series of random
large-length-scale deformations. We implement two families of deformation fields,
corresponding qualitatively to the kinds of deformation previously described: shear
along the walls, and local rotation fields. These fields satisfy, at least in the limit of
small deformation, the constraint of incompressibility of the material and the no-slip
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Figure 14. Elementary soft deformation modes used to approach the foam equilibrium
configuration. (a) Shear test deformation, defined by the amplitude and orientation δs , and
by the location ys of the maximum displacement. (b) The roll test deformation is centred on
(xR, yR). The roll diameter is R, and the angular direction and rotation amplitude is defined
by δR .

boundary conditions. We show in § A.3 that any deformation field compatible with
these constraints can be decomposed as a sum of such elementary deformations fields.

A.2.1. Shear deformation

The first family corresponds to displacement fields that can be written as:

us(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

δs

y

ys

ux for y < ys,

δs

Ly − y

Ly − ys

ux for y > ys,

(A 1)

where ys is an arbitrary position inside the foam (0 <ys < Ly) and δs is the maximum
displacement. Such a displacement field is sketched in figure 14(a). The minimization
proceeds as follow: after a few iterations of the conjugate gradient method, we
randomly pick a position ys and a shear direction represented by the sign of δs . We
then move the structure according to the corresponding displacement field us(x, y)
(equation (A 1)) with an amplitude δs of the order of a tenth of a bubble diameter. We
apply a few SE iterations to adjust the structure at the bubble scale. If the resulting
deformation lowers the total energy, the same field is applied again and the process is
repeated as long as the energy keeps decreasing, otherwise, the same test deformation
is applied with an opposite sign for δs . The process is repeated for other values of ys ,
until no more significant energy reduction can be obtained through this method. This
algorithm is able to relax the structure in figure 13(b–d) in a few seconds.

A.2.2. Roll deformation

A second type of test deformation is used, which corresponds to local rotations as
illustrated in figure 14. The corresponding displacement field is:

uR(r, θ) =

{
δR sin(πr/R) uθ for r < R,

0 uθ for r > R.
(A 2)

The roll, of radius R, is centred in (xR, yR) and r is the distance from the centre.
In the present case, the coordinates of the centre are randomly picked, then the
radius is chosen in the interval R ∈ [Db, min(xR, Ly − xR)] where Db is a cutoff
distance below which the structure can be properly relaxed by conjugated gradient
methods (typically 2 bubble diameters). We then follow the same algorithm as for
the test shear deformations. A larger number of iterations are required to relax the
structure since there are more parameters to vary. However, it achieves a satisfactory
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minimization of the structure much faster than the conjugate method gradient alone
would do. Figure 13(h) has been obtained with this process after a few minutes
of iterations which should be compared to figure 13(g) obtained after a similar
processing time.

A.3. Residual deformation of an incompressible two-dimensional material

The method described above dramatically reduces the minimization process time.
However, in order to reach the true minimum energy configuration, the test fields
introduced above should be able to account for any large-scale deformation of
the foam structure, compatible with the boundary conditions and incompressibility
constraints.

We define the two-dimensional field u(x, y) = (ux(x, y), uy(x, y)) as the displacement
field leading from the actual configuration to the unknown configuration of minimal
energy. As Surface Evolver ensures the conservation of the bubble volume, this
displacement field is incompressible (∇u =0). The field u therefore derives from a
scalar field ψ(x, y) such as:

ux =
∂ψ(x, y)

∂y
, (A 3)

uy = −∂ψ(x, y)

∂x
. (A 4)

Since the foam is attached to the walls, located at y = 0 and y = Ly , the residual field
is necessarily null along the walls (ux(x, 0) = uy(x, 0) = 0 and ux(x, Ly) = uy(x, Ly) = 0).
This implies that the potential satisfies ∂ψ/∂x = ∂ψ/∂y = 0 along the rigid walls: the
potential is constant at the vicinity of the boundaries. Such a function is sketched on
figure 15(a).

In order to validate our algorithm further, we must show that any potential
satisfying the previous condition can be decomposed into a sum of the potentials of
the test fields previously introduced.

The integration of (A 3) for the field associated with the shear test deformation
yields, for the potential ψs:

ψs =
1

2

δL

yL

y2 for y < yL, (A 5)

ψs = −1

2

δL

Ly − yL

(Ly − y)2 +
1

2
δLLy for y > yL. (A 6)

This potential, whose typical shape is described in figure 15(b), satisfies (A 3).
Having a residual shear in the system is associated with a potential difference
ψ(y = Ly) − ψ(y =0) between the two walls. By applying a series of test shear
deformations, the potential associated with the residual distortion can thus be made
null at the boundaries (see figure 15c).

The second family of test deformations, defined by (A 2), leads to the following
expression for the associated potential (expressed here in polar coordinates centred
on the roll):

ψR =
δrR

π

(
cos

(
π

r

R

)
+ 1

)
for r < R, (A 7)

ψR = 0 for r > R, (A 8)
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Figure 15. Examples of potentials associated with the deformation fields for (a) a typical
residual deformation, (b) a shear along the wall direction ψs(x, y) (for yL = 0.7), (c) a typical
residual deformation after the relaxation of the shear modes, (d) a roll deformation.

where R is the radius of the local roll. This corresponds to a family of bell-shaped
functions with compact support; an example is shown in figure 15(d). It is easy to
show that any potential whose value and derivative is null at the boundaries can be
decomposed into a sum of such functions.
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Debrégeas, G., Tabuteau, H. & di Meglio, J.-M. 2001 Deformation and flow of a two-dimensional
foam under continuous shear. Phys. Rev. Lett. 87, 178305.

Dennin, M. & Knobler, C. M. 1997 Experimental studies of bubble dynamics in a slowly driven
monolayer foam. Phys. Rev. Lett. 78, 2485–2488.

Derec, C., Ajdari, A. & Lequeux, F. 2001 Rheology and aging: a simple approach. Eur. Phys. J.
E 4, 355–361.

Dollet, B., Elias, F., Quilliet, C., Raufaste, C., Aubouy, M. & Graner, F. 2005 Two-dimensional
flow of foam around an obstacle: force measurements. Phys. Rev. E 71, 031403.

Falk, M. L. & Langer, J. S. 1998 Dynamics of viscoplastic deformation in amorphous solids Phys.
Rev. E 57, 7192.

Fisher, D. S., Fisher, M. P. A. & Huse, D. A. 1991 Thermal fluctuations, quenched disorder, phase
transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130–159.

Herdtle, T. & Aref, H. 1992 Numerical experiments on two-dimensional foam. J. Fluid Mech. 241,
233.

Hohler, R. & Cohen-Addad, S. 2005 Rheology of liquid foam. J. Phys.: Condensed Matter 17,
R1041–R1069.

Hohler, R., Cohen-Addad, S. & Asnacios, A. 1999 Rheological memory effect in aqueous foam.
Europhys. Lett. 48, 93–98.

Hohler, R., Cohen-Addad, S. & Labiausse, V. 2004 Constitutive equation to describe the non-
linear elastic response of aqueous foams and concentrated emulsions. J. Rheol. 48, 679–690.

Janiaud, E. & Graner, F. 2005 Foam in a two-dimensional Couette shear: a local measurement of
bubble deformation. J. Fluid Mech. 532, 243–267.

Janiaud, E., Weaire, D. & Hutzler, S. 2006 Two-dimensional foam rheology with viscous drag.
Phys. Rev. Lett. 97, 038302.

Jiang, Y., Swart, P. J., Saxena, A., Asipauskas, M. & Glazier, J. A. 1999 Hysteresis and avalanches
in two-dimensional foam rheology simulations. Phys. Rev. E 59, 5819.
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