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The tissues of animal embryos utilize large-scale morphological transforma-
tions to bring about highly sophisticated body plans. In contrast with plant
tissues, where differential growth and change in cell shapes are the main mor-
phogenetic mechanisms, animal cells have in addition the ability to move
with respect to their neighboring cells. Movement can be either active (cell
motility) or passive, for instance as a response to an imposed strain. Despite
the progress in genetics and molecular biology, our understanding of develop-
mental biology still suffers a lack of experimental description and mechanistic
interpretation of how individual cell behaviors lead to well-organized collective
movements at the tissue scale. One of the outstanding issues concerns the role
of mechanical forces, for instance as a driving force for passive morphological
changes, or as involved in signaling pathways regulating active cell behavior.
In this chapter we summarize a framework specifically designed to quantify
the kinematics of embryo development. By analyzing clusters of neighboring
cells, we developed a multiscale geometrical description that decomposes tis-
sue strains into two contributions: one associated with changes in cell shapes
and the other with cell–cell slippage or motility. The emphasis on cell shapes
and cell–cell slippage provides, in particular, a fully continuous framework
especially suitable to capture temporal and spatial heterogeneities regardless
of discrete events such as neighbor exchanges. We also show here explicitly
how the statistics of cell shape changes depend on a microscopic assumption
regarding cell–cell slippage and propose a simple geometrical principle that
can be used to deploy a consistent and robust approach.

13.1 Quantifying Embryo Morphogenesis

13.1.1 Morphogenesis of the Animal Embryo

Modern views of morphogenetic mechanisms have been built from a multi-
disciplinary approach to the study of the problem. Models must span from
subcellular mechanisms of cellular mechanics, adhesion, and polarized cell be-
haviors to a mechanical understanding of substantial portions of the embryo
and its environment. Morphogenetic mechanisms appear to encompass many
classes of cell behavior, ranging from individual cell shape changes and move-
ments to the collective reshaping of sheets of cells during such movements as
invagination during sea urchin gastrulation [15], the convergence and exten-
sion of the vertebrate body axis [14], or the neurulation of the brain [8]. This
class of collective reorganization is considered here, and key questions remain
about identifying the patterns of passive and active cell behavior that shape
the change in tissue morphology.

Our current understanding has closely followed the availability of tools,
principally for microscopy, that have provided a means to address the
dynamics of morphogenetic change in a noninvasive way. Variations among
the trajectories of cells is the first indication of deformation of the tissue. For
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instance, early studies by Jacobson on the neural plate of the newt pointed
to a way of combining microscopic analyses and experimental manipulation
to find a link between patterned regional variation in cell behavior—in this
case, cell shape changes suggesting external mechanical forces responsible for
the shaping of the neural plate [5].

While these early studies have been superseded, the basis of this approach
is still recapitulated in current studies, including our own. To collect high-
resolution and comprehensive 3-D data from which cell behavior and tissue
morphogenesis can be measured has required the development of labeling and
imaging methods capable of resolving cells in living embryos [17]. Software
tools have been developed from which the trajectories and shapes of cells can
be followed over time. Trajectories of cell centroids reveal the patterns of cell
movements [7,16] but this is in itself difficult to interpret in terms of morpho-
genetic mechanisms until used to calculate tissue deformation [8,10] in the
form of strain rates. Microscopic analysis of passive [13] and active tissue re-
shaping [20] has also provided evidence for cell movements or rearrangements
underlying the morphogenesis of tissues.

13.1.2 Cell Intercalation and Rearrangements

Measures of cell area [5], cell neighbor number [22], and the change in cell
neighbor topology [3] have been used to investigate the cellular mechanisms
of morphogenesis. Interpretation of observations of cell rearrangements as pas-
sive or active events is highly dependent on additional biological or experimen-
tal insight into the problem. In recent years the power of molecular and genetic
manipulation to investigate the relationship between cell behavior and mor-
phogenesis has flourished, for instance in the role of planar cell polarity [23].
Deficiencies in cell behavior can be directly correlated with gross abnormali-
ties of tissue morphogenesis [21]. However, to make full use of such methods,
we require means of assaying the local morphogenetic characteristics of cells
such as changes in their shapes and neighbor rearrangements. Independently,
these measures give only their correlation but do not provide a direct link be-
tween events at the cell and tissue level. Linking them in a quantitative way
is therefore necessary to explore causality and eventually identify underlying
mechanisms.

Along that line, several novel approaches have been introduced to extract
statistical and tensorial representations of cell behavior at a mesoscopic scale.
Graner et al. [12] recently generalized tools primarily developed for foam me-
chanics into a generic framework for quantifying the strain and reorganization
of cellular or granular materials based on the movement of cell centers and
the evolution of their network of contacts. Their approach succeeds in relating
material strains with the dynamics of neighbor exchanges, which represents
one of the most visible characteristics of the long-term evolution of tissues.

On short time scales, however, neighbor exchange is a rare event and
the local evolution of a piece of tissue is more appropriately described by
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a combination of cell shape change and minute relative movements of cells
that is referred to as cell–cell slippage. To account for this continuous reor-
ganization, one can develop a kinematic approach by quantifying cell shape
change rather than the dynamics of the cell contact network. In the following
sections, we present in detail the construction of such a framework recently
developed to analyze strains and cell behaviors during embryo morphogene-
sis [4]. It has been validated on a number of experimental situations in 2-D,
such as the Drosophila germband extension [6], Drosophila dorsal closure [11],
or zebrafish neural plate formation [19]. Another novelty in the framework,
introduced in the final section, is the explicit link to a microscopic model of
relative movement at the interface of neighboring cells. Although in practice
reasonable choices can be made at that level, this opens the possibility of more
subtle adjustments of the kinematic model in order to better account for the
biological variety of cell behavior at the microscale.

13.2 Strain Measurements

The experimental measure of strain and strain rates during tissue morpho-
genesis requires us to monitor the motion of material points over time. In
heterogeneous and composite materials, such as biological tissues, internal
displacement fields can be highly complex and one needs to consider at which
length scale and time scale a coarse-grained description is relevant. In the con-
text of embryo morphogenesis, time scales are typically on the order of tens of
minutes up to a few hours, and movements typically involve a large number
of cells. Quantifying cytoskeletal and cytoplasmic movements inside cells is
largely irrelevant as such flows occur on much shorter time scales and length
scales. Although these might be important to understand the biological origin
of collective movements, it is a priori enough, in order to characterize the
deformation at the tissue scale, to average internal motion at the cell scale.
This can be done, for instance, by tracking the cell center of mass (determined
from the cell contour) or the locations of nuclei if the latter are labeled [8]1. As
discussed in Section 13.3, movements within the cell will also be considered,
encompassed in a single tensorial quantity, the cell shape strain rate.

13.2.1 Introduction of a Mesoscopic Scale

From 3-D movies of developing embryos where cell membranes are fluores-
cently labeled [17], the contour of each cell is detected by image analysis and

1Only a marginal amount of extracellular matrix is present in embryo tissue at the early stages
of development. One can therefore assume that cells are contiguous in the tissue and occupy all
its volume.
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the cell center of mass is computed [4]. Individual cells can be followed over
time and their trajectories recorded, as well as their full shape, at any time.
This can be implemented either for a 2-D epithelium or a 3-D tissue. A com-
mon situation corresponds to planar processes along curved surfaces, where
the local strain is suitably accounted for by a 2-D description. In this chapter,
the methods are illustrated using 2-D examples, although each step can be
generalized in 3-D.

Kinematic quantities in the tissue are then defined and measured at a meso-
scopic length scale at which we linearize the cell displacement field. We in-
troduce a time scale �t and length scale nc expressed as a number of cell
diameters. The latter can either represent a topological distance (first neigh-
bors, second neighbors, . . . ) or a physical distance. These two quantities are
used to select a domain surrounding each cell at each time (Figure 13.1). More
precisely, such a neighborhood, denoted by N (i, t), is defined as the collection
of cells located around the cell i , at time t , at a distance at most nc; all
these cells are followed during a time interval [t −�t/2, t +�t/2]. Although the
connectivity of the cells can be used to define the neighborhood, it should be
stressed that it is not a requirement; it only serves the purpose of conveniently
defining a cohort of cells whose relative motion is tracked for a certain time.

13.2.2 Tissue Strain Rates

Defining absolute strains in embryos is often inconvenient due to the lack of
a meaningful reference state and the complexity of handling the large finite
strains that accumulate over time. Rather than using such quantities, we
therefore focus on strain rates that can be easily mapped to reveal temporal
and spatial patterns and conveniently integrated if necessary. In the following,
we describe the generic approach used to estimate tissue strain rates from cell
trajectories. Such methods are broadly used in hydrodynamics [18] and solid
mechanics [9] to quantify intrinsic strains and strain rates, and have been
successfully applied to geophysical measurements, in particular in the context
of plate tectonics [1].

13.2.2.1 Velocity Gradient

By convention in this chapter the index i represents the identity of a cell.
Vector symbols are underlined, and tensors are written in bold characters.
The position of a cell over time, or trajectory, is denoted by r i (t). The cell
velocity in the reference frame of the microscope is v i (t) = dr i/dt , and is
calculated by linearizing the cell displacement over a time interval t ± �t/2.
Within a neighborhood N (i, t), one can define a number of averaged quantities.
The position of the cohort is defined by:

Ri (t) =
�
ri �(t)

�
i �∈N (i,t)

(13.1)
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FIGURE 13.1 Example of tracking for a cell cohort in the zebrafish trunk.
(a) Image of the first cellular layer flattened on a plane from a 3-D confocal
stack. (b) Reconstructed cell membranes. (c) Evolution of a cell cohort, for
the group radius corresponding to nc = 2, and �t = 8 min. (d) Displacement
field calculated from the above images. (e) Residual displacements once the
mean velocity is subtracted. (f) Velocity gradient tensor Lt resulting from
the linearization of the velocity field. The cross indicates the direction of
eigenvectors of the symmetric part Dt. The corresponding eigenvalues are
coded in the length of the bars, with an arrow pointing outward for a positive
eigenvalue (extension) or inward for a negative eigenvalue (convergence). The
scythe motif represents the spin tensor Wt, with a diameter in proportion to
the magnitude of the antisymmetrical element. The radii of the dashed circles
correspond to 0.8% and 1.6% per minute. (Data from [4].)

The average velocity of the cohort is:

Vi (t) =
�
vi �

�
i �∈N (i,t)

(13.2)

The velocity field is then linearized within the neighborhood to calculate the
velocity gradient tensor Lt:

vi �(t) = Vi (t) + Lt

�
ri �(t) − Ri (t)

�
+ �vi � (13.3)

The tensor Lt is, for instance, obtained from a least-squares fit of the ex-
perimental data. The residuals �vi � can be used to assess the fit quality. The
variation of the residuals with the neighborhood size nc and integration time
�t is in itself an interesting quantity that informs about the sources of the
deviation, such as spatial heterogeneities, uniform noise in the position, etc.
Nonaffinity in the displacement field is discussed later in this chapter.
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13.2.2.2 Stretch and Rotation Rates

As strain rates intrinsically characterize infinitesimal strain increments, they
can be appropriately decomposed into a sum of a stretch rate tensor Dt and
a spin tensor Wt, that is, a tensor accounting for the rate of rotation of the
cohort domain. The tissue stretch rate tensor is defined as:

Dt =
�
Lt + Lt

T
�
/2 (13.4)

It is a symmetric tensor; its eigenvectors indicate the main axes of deforma-
tion, while the corresponding eigenvalues indicate the rate of elongation along
these axes. The tissue spin tensor corresponds to the antisymmetrical part of
the velocity gradient tensor:

Wt =
�
Lt − Lt

T
�
/2 (13.5)

13.2.3 Applications of Velocity Gradient Strain Tensor
in Biology

The measurement of the velocity gradient tensor field has been applied to di-
verse embryological tissues, containing hundreds or thousands of cells, and for
periods up to 3 hours [6,11,19]. For example, the fruit-fly germband converges
to the ventral side of the embryo as it extends in the anterior–posterior axis
in movements analogous to the convergence and extension of the vertebrate
trunk. Analysis revealed that there was a gradient of increasing extension to
the posterior, and a gradient of increasing convergence toward the ventral mid-
line [6]. The latter gradient was correlated with tissue rotation in the flanking
regions both anterior and posterior. The total accumulated strain of the tissue
was comparable to published “shoelace” methods, and the time evolution of
the process was found to be biphasic with a fast early phase followed by a
slower phase. One direct advantage of mapping these quantities is to allow
comparison between individuals to estimate inter-individual variability. The
morphogenesis of the wild-type flies was then compared to various mutant fly
strains whose morphogenesis is known to be abnormal during the convergence
and extension process.

13.3 Cell Shapes and Intercalation

As mentioned in Section 13.1, changes in tissue morphology are accounted
for at the cell scale by two main classes of evolution: cells can change shape
and cells can rearrange (i.e., move relative to their closest neighbors). Both
have a direct geometrical signature, and a proper kinematic description of
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(d)

FIGURE 13.2 Schematic representation of the deformation of a piece of
tissue; time increases from left to right. (a) Evolution of the cell centers, from
which we can extract the tissue strain tensor. (b) and (c) Two opposite modes
of shape deformations consistent with the tissue strain field shown in (a). The
evolution of a ring of first neighbors is highlighted by line segments. (d) Shows
another example where there is no tissue deformation, only a transfer between
shape deformation and intercalation.

tissue morphogenesis must account for this. First, it should be highlighted
that such information cannot be extracted from the motion of cell centers
only. Figure 13.2 illustrates, for a uniform stretching of a regular hexagonal
lattice, two different types of cellular dynamics that are consistent with the
same overall tissue strain. In the first case (Figure 13.2(b)), the shape of
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each cell experiences exactly the same strain as the piece of tissue. In the
second situation (Figure 13.2(c)), although cell shapes slightly evolve over
time, cells mostly compensate the tissue strain by moving past each other
while remaining, on average, isotropic. This movement corresponds to a purely
intercalating group of cells where all the deformation is associated with cell
slippage, eventually leading to topological reorganizations in the sample, that
is, neighbor exchanges. These two examples therefore demonstrate that cell
shape evolves independently of the tissue strain according to their ability to
intercalate. As shown in Figure 13.2(d), even if the tissue is not changing
shape, there can be an interplay between cell shapes and cell slippage leading
to a reorganization of the cells in the tissue. In addition to the motion of the
centers, information must therefore be extracted from the dynamics of cell
reorganization or cell shape evolution in order to discriminate between cell
shape and intercalation-driven tissue reshaping processes.

The approach introduced by Graner et al. [12] addresses that issue; it uses
the dynamics of the network of neighboring cells to track rearrangements in
addition to the tissue strain. The authors build a number of statistical quanti-
ties from the distribution of links between first or second neighbors. Each cell
rearrangement causes the network of first neighbors to evolve since links are
gained where cells come closer, and lost in directions where cells move away.
This allows the building of tensorial quantities to quantify both the tissue
strain and the reorganization of the cell within the tissue. This method has a
number of advantages, including a simple implementation in 2-D and 3-D, and
a broad range of applications, in particular in the field of granular systems
and colloidal suspensions where the contact network is more relevant than the
individual shape of the particles. However, in the context of biological tissues,
it starts capturing intercalation only when neighborhood relationships evolve.
For instance, in the first two examples in Figures 13.2(b) and 13.2(c), such
a method would see a difference between the shape- and intercalation-driven
processes only after cells rearrange (second half) because until then, both the
center of mass locations and contact networks are exactly identical in the two
examples.

To capture the continuous nature of cell shapes and cell motility indepen-
dently of cell rearrangements, we introduce in this section a general approach
based on cell shape and its statistical evolution that allows us to quantify the
respective contributions of both shape variations and intercalation movements
to the total tissue extension previously studied. The definition of the interca-
lation tensor is then discussed in light of its microscopical interpretation.

13.3.1 Cell Shape Evolution

We aim to determine the strain tensor that accounts for the evolution in
shape of the cells contained in a given neighborhood during the time interval
�t , that is, that transforms the initial collection of cell shapes into a collection
of shapes that is statistically equivalent to the final cell shapes, in terms of
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0 minutes 8 minutes

Lc

FIGURE 13.3 Illustration of the shape measurements. Top images show
the evolution of a cohort of cells. Elliptical fits of individual cells are overlayed.
The shape strain rate tensor is the transformation that, when applied to the
initial collection of ellipses, matches the distribution of shapes in the final
configuration.

orientation and elongation. Information concerning the relative placement of
cells (as used in the previous section) and their neighborhood relationship is
here irrelevant and discarded (see Figure 13.3).

Several approaches can be used to tackle this question. One is to consider,
for each cell individually, the strain rate that best matches the shape evolu-
tion. The question of identifying the strain that transforms one shape into
another has been extensively studied in image processing. Most registration
methods (optical flow, digital image correlation, etc.) estimate the physical
displacement of points in images and use it to deduce the local deforma-
tion. Unfortunately, such methods are not suitable for identifying the de-
formation of the cell shape because the movements of details of the mem-
brane geometry (which is the only morphological feature available here) is
locally non-affine and does not necessarily represent the average strain of
the cell bulk. This is illustrated on Figure 13.4 where a regular arrange-
ment of hexagon centers follows a simple shear deformation and cells ac-
commodate it mostly by sliding on each other. We used a full registration
method to estimate the strain tensor of individual shapes. The resulting ten-
sor captures primarily the movement of membranes, which results in typically
three solutions where the spin of the shape is either null or twice as big
as the rotation component of the tissue velocity gradient. It is difficult to
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(a) (b) (c)

FIGURE 13.4 Typical issues arising with full registration methods applied
to situations where non-affine shape deformations are present. (a) Regular
hexagonal pattern. (b) Its evolution after a pure shear deformation. Shapes
are recalculated in this example from the Voronoi tesselation of the cell centers.
(c) Three local solutions for the shape strain typically obtained when trying
to find the strain tensor that minimizes the nonoverlapping area. Dashed
lines show the target shape displayed in (b), and the solid line, the calculated
transformation of the initial hexagon in (a).

choose between these options, and there is no reason to believe a priori that
the bulk of the cell tends to rotate on itself with respect to the tissue. This
simple situation shows that, in general, registration methods on the membrane
contour cannot be used to extract the cell shape strain. The only reliable
information we can use at this stage corresponds to the global anisotropy
of the cell shape, represented, for instance, by an elliptical fit to its shape.
Another approach, introduced by Aubouy et al. [2] and not developed here,
uses a (symmetric) texture tensor to characterize the average cell shape at the
neighborhood scale. In all cases, we end up with an “elliptical” representation
of the cell shapes, and we basically need to know what linear application
transforms a given ellipse into another. Unfortunately, there is not a unique
solution to the problem.

Let us define two elliptical shapes C1 and C2. Each of them is fully char-
acterized by a pair of orthogonal vectors (a1, b1) and (a2, b2) representing,
respectively, their minor and major axis directions and length (see Figure
13.5a). To transform C1 into C2, one can, for instance, first rotate C1 until
a1 is along a2, and then stretch the shape accordingly; or equivalently, first
stretch the shape and then rotate it (Figure 13.5c). In both cases, points lo-
cated along the main axis of C1 end on the main axis of C2. One could also
directly search for a symmetric tensor that transforms C1 into C2 (Figure
13.5d). The eigenvectors of this tensor are not, in general, along the axis of
either ellipse and, in contrast to the previous situation, the vectors a1 and
b1 would not be mapped into the vectors a2 and b2. In fact, a continuum
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(c) (d)

C2 C2
C1

–1
b2

R(α)
α

a2

b1
a1

FIGURE 13.5 Family of deformations that transform one ellipse into an-
other. (a) Description of the two ellipses C1 and C2. (b) Generic decomposition
of the transformation into two stretches and an arbitrary rotation. Symbols
indicate how a few specific points move with the deformation. (c) Example of a
deformation that preserves the position of points with respect to the main axis
of the ellipse. (d) Example of a deformation constrained to be symmetrical.

of solutions can easily be found. Let C1 and C2 be the (symmetric) stretch
matrices that transform a circle of radius one onto, respectively, C1 and C2:

C1 =
�

a1 0

0 b1

�
,C2 =

�
a2 0

0 b2

�
(13.6)

expressed on the basis of unit vectors along the principal axis of C1 and C2,
respectively. Let R(�) be a rotation of angle �. For all values of �, the trans-
formation A(�) = C2R(�)C1

−1 transforms C1 into C2 (see Figure 13.5b).
Depending on the value of the angle �, the image of a given point along C1 is
going to move along C2, as illustrated on Figure 13.5. This simple argument
shows that building a strain tensor based on an elliptic representation of a
shape is fundamentally undetermined.

A natural hypothesis to fully specify the shape deformation is to set the
shape rotation component to match the tissue rotation, that is, so that the
cells are not rotating with respect to the tissue. This ensures, in particular,
that if a piece of tissue is uniformly rotated, the cell shape strain matches the
tissue strain. In the case of a pure stretch of a tissue without intercalation,
the shape deformation is also identical to the tissue strain, as expected. If we
denote Lc as the cell shape strain rate, and use the same decomposition into
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FIGURE 13.6 Evolution of the strains for the examples presented on
Figures 13.2(b) (a to c) and 13.2(c) (d to f). The stretch ratio represents
the ratio between the current tissue length and the initial length. Solid lines
correspond to the direction of extension (horizontal), and dashed lines to the
direction of convergence (vertical). From G.B. Blanchard, A.J. Kabla, N.L.
Schultz, L.C. Butler, B. Sanson, N. Gornkiel, L. Mahadevan, and R.J. Adams
(2009) Tissue tectonics: morphogenetic strain rates, cell shape change and
intercalation. Nature Methods, in press. (With permission).

a symmetrical and anti-symmetrical part, we obtain:

Lc = Dc + Wc with Wc = Wt (13.7)

A general method used to calculate the symmetrical component of the cell
shape strain rate for a local domain is introduced in [4]. Figures 13.6(a) and
b show the evolution of the total tissue strain for the hexagonal pattern de-
scribed on Figure 13.2(b). In this example we find, as expected, that the cell
shape follows precisely the tissue stretch. The same kind of plot is presented
in Figures 13.6(d) and 13.6(e) for the intercalating tissue (Figure 13.2(c)). In
that case, the shape strain slightly varies about zero, indicating indeed that
cells do not deform on average.

As all the volume of the local group of cells is simply the sum of cell volumes
(there is no free space between cells), the cell shape strain rate tensor must
also account for any variation in tissue volume. This implies that the trace of
Lc is identical with the trace of Lt.

Tr Lt = Tr Lc (13.8)
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13.3.2 Tensorial Representation of Cell Intercalation

As suggested by the examples above (Figure 13.2), identical shape and tissue
strain rates are a signature of nonintercalating tissues. On the other hand,
the presence of collective slippage between cells leads to a mismatch between
tissue strain rate and cell shape strain rate. More generally, the part of the
tissue strain that is not accounted for by the shape evolution reflects collective
movements of cells past each other. This suggests a very simple definition for
a strain rate tensor Li characterizing intercalation based on the shape change
and tissue strain rate tensors, defined as:

Lt = Lc + Li (13.9)

The physical meaning of this tensor is explored further in the next section.
We calculated that quantity for the examples introduced on Figures 13.2(b)
and 13.2(c), as plotted on the graphs in Figures 13.6(c) and 13.6(f) showing
the evolution of the accumulated intercalation strain for both examples. As
expected, there is no intercalation for the first case. More interestingly, there is
a monotonic and continuous increase in the total intercalation for the second
example. We can identify a few important properties of the intercalation rate
tensor Li. First, the trace of Li is zero, as all volume variations in the tissue
are accounted for by the shapes. Second, assuming that the shape rotation is
identical to the tissue rotation, Li is symmetrical. It therefore has a diagonal
form with two eigenvalues of opposite sign.

13.3.3 Handling Cell Division

While we monitor the evolution of a neighborhood, cell division might happen
and rules regarding the handling of such events should be defined in the light
of their influence on tissue deformation. If one considers the situation of a
local neighborhood in which a cell division event occurs during the time of
observation �t , the mere fact that a new membrane now splits a large cell
into two smaller units does not influence directly the surrounding tissue (see
Figure 13.7).What matters in practice is the change in cell shape before and
after the division. As a consequence, to measure kinematic quantities that
are relevant for a neighborhood, cells that divide during the time �t of the
measurement are maintained artificially linked: the location and shape of the
composite entity are obtained by merging the two cells. In practice, �t is small
enough that cells remain in contact during the strain measurement.

13.3.4 Applications

The breakdown of the tissue strain rate tensor into cell shape and cell inter-
calation strain rate tensors allows us to map these two cell behaviors in space
and over time in real tissues, just as can be done for the tissue strain rate ten-
sor. Measured intercalation strain rates emerged as predominantly pure shear
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FIGURE 13.7 Illustration of the evolution of a cell elongating in a nonin-
tercalating tissue. On the top path, one cell is followed through a sequence of
change in shape, division event, and change in shape. On the bottom path, we
represent a cell changing shape with a strain that is identical to the top sit-
uation with the daughter cells merged together. Both scenarios are expected
to have the same effect on the surrounding tissue at a mesoscopic scale.

deformations, as predicted. In the fruit fly example [6] introduced in Section
13.2.3, the relative contributions of two cellular mechanisms were very reveal-
ing. Cell shape change and intercalation were equally strong during the early
fast phase of germband extension, but cell shape change then reduced quite
quickly, leaving only cell intercalation during the slow phase. Interestingly,
in a mutant where the cell intercalation machinery was significantly compro-
mised, the total tissue deformation was unaffected during the fast phase, but
the relative contribution of the cellular mechanisms was different, with cell
shape stretch significantly increased, compared to the wild-type flies, at the
expense of cell intercalation. During the slow phase, cell shapes rounded up,
suggesting that cell shape elongation was an elastic response to an external
pull. Further insights have been gained into the formation of the zebrafish
forebrain [8], convergence and extension in the zebrafish trunk [19], and the
amnioserosa tissue of the fruit fly [11] using these methods.

13.4 Intercalation and Slippage

Intercalation is defined as the mismatch between the tissue strain rate and
the cell shape strain rate. Its definition has been postulated from the fact that
only cell intercalation can explain the difference between shape deformation
and tissue strain. In this section we develop a microscopic interpretation of
this tensor and show that it is intimately related to cell–cell slippage.

13.4.1 Cell–Cell Slippage

Our approach is based on the simultaneous quantification of movements within
the cells (cell shape tensor) and at the cell cohort scale. The cell shape tensor
is a very coarse description of material movement in the cell, which is known
to be highly complex; it provides, however, the minimal description needed to
compare cell and tissue strains. Figures 13.8(a) and 13.8(c) reuse the examples
introduced on Figures 13.2(b) and 13.2(c) to illustrate the link between cell
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FIGURE 13.8 Illustration of the link between intercalation and slippage.
(a) and (c) show a few cells extracted from Figures 13.2(b) (cell shape change)
and 13.2(c) (intercalation), respectively. The ellipses in (b) and (d) represent
the average shapes of cells in (a) and (c). White triangles within each ellipse
are deformed accordingly to the cell shape strain tensor. (e) and (f) illus-
trate the construction of the slippage velocity (see text). (g) and (h) show
the representation of the intercalation tensor in terms of slippage velocity.
Vectors plotted along the circle correspond to the tangential (g) and normal
(h) components of the slippage vector.
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slippage and intercalation. The white triangles inside cells in Figures 13.8(b)
and 13.8(d) evolve according to the cell shape strain rate Lc and allow us to
visualize the strain within each cell. The shifts appearing among the three
facing triangles during intercalation highlight, at the microscopic scale, the
consequences of a mismatch of tissue and cell shape strain rates: in intercalat-
ing tissues, slippage occurs between neighboring cells, meaning that a domain
about the cell interface necessarily experiences a local strain that does not
correspond to the cell shape strain. Because we decided to ignore the com-
plexity of the movements within cells, we represent here this complex flow
near the cell membrane by a discontinuity at the cell interface, which can
then be estimated geometrically.

We consider two neighboring cells C1 and C2. A point P is chosen along
their interface. The velocity of P can be calculated in two different ways.
Assuming it belongs to C1, its velocity relative to the center of mass of C1
is u1 = Lcr1P . Assuming now it belongs to the cell C2, its velocity would
be u2 = Ltr12 + Lcr2P . The discontinuity u at the interface can therefore be
deduced:

u = u2 − u1 = Ltr12 + Lcr2P − Lcr1P = (Lt − Lc)r12 = Lir12 (13.10)

This construction demonstrates that the intercalation rate tensor is indeed
a natural physical quantity for characterizing the movement of cells past each
other. The velocity u has a priori components along and perpendicular to the
cell membrane. In the case of the intercalating hexagons, the corresponding
intercalation tensor as well as the tangential and normal components of the
velocity u are shown in Figures 13.8(g) and 13.8(h).

The component us of u along the cell membrane is a direct measurement of
slippage velocity. It has a maximum at an angle of about 45◦ of the main axis
of the intercalation tensor (see Figure 13.5(g)). However, along the eigendirec-
tions of the latter, the slippage velocity vanishes, and most of the movement
occurs normal to the interface. This component indicates the evolution of the
ellipses overlap, corresponding qualitatively to the surface area of the cell–cell
interfaces. Where u points inward, the contact area between the cells increases;
where u points outward, the contact area decreases. Ultimately, this means
that new neighbors are, respectively, gained or lost along these directions.

The description above sets the microscopic picture underlying the definition
of the intercalation tensor introduced in the previous section. The framework
provides us with three different scales: (1) the cell cohort, which is a meso-
scopic scale to describe local tissue strain; (2) the single cell, for which we
measure an internal strain rate; and finally (3) the cell–cell interface, along
which slippage can be estimated.

13.4.2 Total Slippage

We assumed in the previous section that the rotation rate of cell shapes was
the same as the tissue rotation rate. One argument for such a choice is that
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FIGURE 13.9 Geometrical symbols used in the text. The ellipse is
parametrized by the angle �: r (�) = (a cos(�); b sin(�)).

it guaranties that cells of non-intercalating tissues do not rotate against each
other. We need, however, to analyze further this choice as it is unclear how
the same argument applies to fully or partially intercalating tissues.

We showed on Figure 13.5 that the choice of the shape rotation has a direct
influence on the movements of points at the surface of an ellipse. Because
these movements control, in part, cell slippage in the context of tissues, one
can study how any particular assumption regarding cell rotation influences
cell slippage at the microscale. A first step is to construct a measure of the
total slippage required to transform the cell cohort and then explore ways to
use such a physical quantity to build a self-consistent kinematic description.

The amount of cell–cell slippage S locally in the tissue can be quantified
by integrating the squared slippage velocity along an elliptical contour C
representing the average cell elongation in a neighborhood:

S =
�

C

�
u · es

�2
ds (13.11)

where s corresponds to the curvilinear abscissa along the ellipse. The ellipse
contour C is parameterized by an angle � so that r (�) = (a cos(�); b sin(�))

(see Figure 13.9). Defining the matrix:

C =
�

a 0

0 b

�
(13.12)

the position along the contour can be rewritten as r (�) = Cer (�). The tangent
to the ellipse is along dr/d� = Ce�. The unit vector tangent to the ellipse is
given by es = Ce�/(ds/d�). The total slippage can therefore be rewritten as:

S =
�

C

�
LiCer (�) · Ce�

�2
�

ds

d�

�−1

d� (13.13)
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In Section 13.3.1, we characterized the family of deformations that trans-
forms a particular ellipse into another. For each value of the angle �, we obtain
a different shape strain tensor A(�) that can be written for small strains as
A(�) = Id + Lc(�)�t . From this, the decomposition of the shape strain rate
directly allows us to determine the tensors Dc(�) and Wc(�), the latter asso-
ciated with the angular velocity �c(�). For simplicity, we directly express the
different tensors as a function of �c rather than � in the following.

For each value of �c, we therefore have a corresponding intercalation rate
tensor Li(�c). Unless �c is identical to the tissue angular velocity, denoted
by �t , Li is not symmetrical, and has an antisymmetrical component corre-
sponding to an angular velocity �i = �t − �c. For a given cell elongation and
a given tissue velocity gradient and shape evolution, we can now study how
the total slippage S varies as a function of the shape angular velocity �c or
equivalently �i . It remains true that Tr Li = 0 for all �i , although all elements
of the tensor change with �i , taking the general form below:

Li(�i ) =
�

�(�i ) �(�i ) − �i

�(�i ) + �i −�(�i )

�
(13.14)

For small anisotropy of the cell shapes, the total slippage becomes (see
Appendix at end of chapter for details):

S(�i ) = 2�(ab)3/2
�

�2
i − 1

2

�a

b
− 1

�
�i � + �2 + �2

2

�
(13.15)

The expression above shows that the total slippage S(�i ) depends on both the
cell shape aspect ratio and orientation with respect to the deformation. This
leads to the identification of several cases of interest, as discussed below.

13.4.3 Typical Situations

13.4.3.1 Tissue Strain without Intercalation

If the tissue deforms with the velocity gradient Lt, and if the same tensor
Lt also deforms the cell shapes, this implies that Li(�i = 0) = 0. Therefore,
slippage is minimal for �i = 0, as S(�i = 0) is strictly equal to zero. In
the simple case of nonintercalating tissues, the shape strain rate that provides
minimal slippage gives a meaningful output. Figure 13.10a shows the evolution
of S(�i ) in the context of a simple shear of both the tissue and the shape for
a cell elongating along the shear direction (a/b = 1.21).

13.4.3.2 Tissue Intercalation along the Orientation of Cell
Elongation

In the case where the tissue intercalates along one of the main orientations of
the cell shape, Li(0) is diagonal in the basis of the ellipse axes. It results in
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�(�i = 0) = 0. Moreover, by symmetry, �(�i ) is an odd function, implying
that �(�i ) ∼ �i . This means, in particular, that S(�i ) = S(−�i ). Figure
13.10b displays the total slippage as a function of �i for such a situation,
with highly elongated cells (a/b = 2). We observe indeed that the slippage is
minimal when the shape rotates exactly with the tissue. This situation is quite
frequent in reshaping tissues as the cell elongation is usually caused by the
strain history itself, either as a passive adaptation or as an active contribution.
In that situation, a symmetry argument is, in practice, enough to rule out any
cell shape rotation other than the tissue rotation itself. It is also consistent
with the minimal slippage idea.

13.4.3.3 Tissue Intercalation not along the Orientation of Cell
Elongation

This corresponds to the most generic type of deformation. A common example
is a simple shear deformation of a tissue with cells elongated along or normal
to the shear direction. Such a case is addressed on Figure 13.10(c) for four
values of the cell anisotropy. We observe that the shape spin that provides the
smallest slippage is therefore different from the tissue spin. Consistent with
Equation (13.15), this shift increases with the cell anisotropy. However, even
for highly deformed cells (a/b ≥ 2), the difference between tissue and shape
rotation would be less than 10%.

In the three situations described above, our initial choice for the cell shape
rotation rate seems justified a posteriori based on a minimal slippage argu-
ment. Assuming that the cells do not rotate in a reference frame attached to
the tissue (i.e., �t = �c, �i = 0) provides an excellent approximation, if not
an exact answer. In many situations the result could come from symmetry
arguments. However, in cases where the cell shape is not aligned with the
eigenvectors of the intercalation strain rate tensor, there is no trivial answer
and the robustness of the kinematic approach had to be verified. Although we
provide here a workable and generic approach to quantify tissue morphogene-
sis, the kinematic description of cellular movements remains empirically linked
with a microscopic assumption that sets the cell rotation and the amount of
cell–cell slippage.

The main advantage of developing an approach based on slippage is to
clearly highlight the microscopic origin and consequences of choices made at
the tensorial level. Although it seems natural to penalize choices of rotation
that induce unnecessary cell slippage, one should question how this penalty is
practically determined, and in particular if slippage should be penalized the
same way for all directions as we did above. The case of steady simple shear
deformation is, for instance, a situation that remains to be explored. If cells
move along layers, one can reasonably imagine that the slippage is mostly
localized between layers, and not so much between cells of the same layer, as
depicted on Figure 13.11. In such a situation, the kinematic description should
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Lt Lc

(a) (b)

Li Lt Lc Li

FIGURE 13.11 Two different shear situations: (a) Typical approach de-
veloped here, where cells rotate according to the tissue spin and slippage is
shared among all neighbors; (b) Alternative situation in which slippage is
more localized. To account for such a case, the minimal slippage argument
must be adapted.

therefore account for the peculiarity of cell–cell interactions and be aware of
the existence of planes of sliding arising either from anisotropic adhesion or
active cell crawling. Allowing the intercalation tensor to have, in general, a
rotational component then provides a natural way to express, within the same
kinematic framework, that slippage inside cell layers is low compared to its
value between layers.

13.4.4 Intercalation and Tissue Microstructure

Figure 13.8 provides a microscopic interpretation of the intercalation strain
rate tensor. We first characterized in detail the slippage behavior of cells
past each other, which mostly concerns cells contacting at about 45◦ to the
eigenvectors of the intercalation tensors, where relative cell slippage is non-
negligible (see Figure 13.8(g)). Cell movements along the direction of exten-
sion or convergence of the tissue are more subtle. Along these directions,
slippage is low on average and the orientation of the relative velocity u de-
fined in Equation (13.10) is mostly normal to the cell membrane, indicating
that neighboring cells tend in practice to decrease or increase their contact
area. However, these simple dynamics can only exist for a finite amount of
time. The example of intercalating hexagons provides a good illustration of
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FIGURE 13.12 (a) Evolution of a purely intercalating tissue. During the
first three steps, the hexagon network can deform in an affine way. Beyond
that, non-affine displacement is required (images are only qualitative illustra-
tions). (b) and (c) Details of the evolution of a few neighboring cells extracted
from experimental data (zebrafish, [4]). As cells 1 and 2 come closer, the field
is nearly affine. Once cells 1, 2, and 3 form a chain along the converging axis,
highly non-affine displacements are required to satisfy the mean tissue and
shape strains.

the process (Figure 13.12(a)), showing that even if it is well ordered, a purely
intercalating tissue can reorganize in a homogeneous or affine manner only up
to deformations on the order of 60%.

As cells move past each other, the detail of the distribution of mem-
brane orientation evolves, creating, in particular, new contacts along the
direction of convergence, and decreasing their number in the extension di-
rection. Once cells come into contact along the direction of convergence,
the affine displacement of cells becomes impossible and cells have to move
in a non-affine way to accommodate the strain by intercalation. The last
two steps of Figure 13.12(a) show a schematic of that process. Evidence of



374 Cell Mechanics

such behavior can be readily found in experimental records. Figures 13.12(b)
and 13.12(c) show the evolution over time of an intercalating cluster of
cells. During the first 15 minutes, the displacement field is globally affine,
and a pair of cells can be seen converging and forming a new interface.
However, after 20 minutes, the cells 1, 2, and 3 form a chain that can-
not intercalate further in an affine way without overlapping. From the re-
sulting displacement fields, the non-affinity can be quantified by the value
of < �v2

i > at each time, �vi being the residual velocity in Equation (13.3).
For the five time steps shown on Figure 13.12(c), we measure < �v2

i >=
0.10, 0.19, 0.87, 0.68, 0.52, respectively, showing as expected a dramatic rise
between 12 and 23 minutes.

Non-affine cell displacements cause significant heterogeneities in the velocity
field (quantified above from the residuals). This also leads to variations in
the cell shape strain rates within a neighborhood. The precise amount of
slippage in a tissue has been therefore underestimated in our previous first-
order approach, which neglected heterogeneities in the relative displacement
field, in slippage, and in cell shapes. Non-affinity is probably not relevant at
the tissue scale but, because it reflects the detailed structure and dynamics of
the tissue and membrane orientation, it may highlight intrinsic mechanisms
used by cells to produce or respond to macroscopic strains. In the case of living
tissues, experimental studies must be carried out to quantify non-affinity and
relate it to intrinsic material properties and in particular to its geometrical
organization at the cell scale.

We developed a formalism here to quantify strains in reshaping tissues. In
addition to strain rate measurements based on individual cell trajectories in
the tissue, we introduced a quantification of cell shape changes and interca-
lation. The kinematic approach leads to a set of tensorial quantities defined
for a local group of cells, approximating the local complexity by an affine
description of the tissue deformation, and an elliptical representation of the
cell shapes. Such a level of description represents a strong advantage to ac-
count for the global tissue morphogenesis; it allows us to define quantities that
are continuous and easy to map with high resolution in space and time. We
showed, in particular, that these quantities also reflect intrinsic cell behavior,
such as shape change or slippage.

This framework introduces an explicit dependence on a microscopic as-
sumption for cell–cell movements that sets the amount of rotation of the cell
shapes. We propose to choose the rotation component so that cell–cell slip-
page is minimal; this corresponds in most practical cases to assuming that
cells do not rotate in the tissue frame. However, this leads to nontrivial sit-
uations when, for instance, slippage occurs during a simple shear flow. Fur-
ther development in quantifying morphogenetic movements will therefore be
concerned with higher-order descriptions, accounting for the common and
as yet unresolved situation of sheared layers and non-affine displacement
fields.
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13.5 Appendix: Total Slippage for Nearly Isotropic Cell
Shapes

The measure S of the total slippage along the membrane of an ellipse can be
calculated analytically if the intercalation rate tensor is known.

The geometrical notations used below are defined on Figure 13.9. The quan-
tity S is calculated from Equations (13.13) and (13.14). We define the mean
ellipse radius R and anisotropy 	 by R2 = ab and 	 = a/R = R/b. Equation
(13.13) writes:

S̃ = S

R3 =
�

C

�
LiC̃er (�) · C̃e�

�2
�

ds̃

d�

�−1

d� with C̃ = C/R =
�

	 0

0 1/	

�

(13.16)

and s̃ = s/R. This leads to:

ds̃

d�
=

�
1
2

�
	2 + 1

	2 −
�

	2 − 1
	2

�
cos(2�)

�
(13.17)

and

LiC̃er (�) · C̃e� = dr̃

d�
· ũ = � cos(2�) − �

2

�
	2 + 1

	2

�
sin(2�) + �i (13.18)

Assuming small anisotropy for the cell shape, we define A = 1
2 (

a
b − 1) such

as 	 ≈ 1 + A and 	−1 ≈ 1 − A. The two expressions above can be simplified
into:

ds̃

d�
= 1 − A cos(2�) (13.19)

and

LiC̃er (�) · C̃e� = � cos(2�) − � sin(2�) + �i (13.20)

By substituting the slippage integral, we get:

S̃ = S

R3 =
�

C

�
�2

i − 2A�i � cos2(2�) + (� cos (2�) − � sin (2�))2� d� (13.21)

providing after integration a relationship corresponding to Equation (13.15):

S̃ = S

R3 = 2�

�
�2

i − A�i � + �2 + �2

2

�
(13.22)
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