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Cellularised materials are composed of cells interfaced through

specialised intercellular junctions that link the cytoskeleton of

one cell to that of its neighbours allowing for transmission of

forces. Cellularised materials are common in early

development and adult tissues where they can be found in the

form of cell sheets, cysts, or amorphous aggregates and in

pathophysiological conditions such as cancerous tumours.

Given the growing realisation that forces can regulate cell

physiology and developmental processes, understanding how

cellularised materials deform under mechanical stress or

dissipate stress appear as key biological questions. In this

review, we will discuss the dynamic mechanical properties of

cellularised materials devoid of extracellular matrix.
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Introduction
Cellularised materials are composed of cells interfaced

through specialised intercellular junctions. These link the

cytoskeleton of one cell to that of its neighbours allowing

for transmission of forces over large length-scales. Cellu-

larised materials are common in early development and

adult tissues where they can be found in the form of cell

sheets, cysts, or amorphous aggregates and in pathophys-

iological conditions such as cancerous tumours. In this

review, we will discuss the mechanical properties of

cellularised materials devoid of extracellular matrix
www.sciencedirect.com 
(ECM). Early in development, the ECM is either absent

or present in such scant quantities that it may play a

polarisation role rather than a mechanical one [1–4]. In

contrast, in adult tissues, the ECM tends to dominate

mechanical responses and its remodelling by cells can

conceptually be thought of as a very slow process.

The mechanics of cellularised materials are influenced by

organisation and dynamics at both the molecular-scale

and the cellular-scale. The relative importance of these

two length-scales remains an open question and likely

depends on what time-scale is being considered. For

example, at time-scales shorter than a second, the con-

tributions of genetic and biological regulatory pathways

can safely be ignored whereas, for longer time-scales,

biochemistry and signalling must to be taken into ac-

count.

In this review, we will first summarise experiments ex-

amining the rheology of cellularised materials, then we

will turn to the respective roles of molecular-scale and

cellular-scale phenomena in tissue mechanics, and finally,

we will discuss the various theoretical approaches used to

investigate tissue mechanics.

The rheology of cellularised materials
Cellularised aggregates possess complex mechanical

properties. Indeed, dependent on the duration over which

stress is applied, they behave either as liquids or solids.

On time-scales of the order of 10s, cellular aggregates

behave elastically, recovering their original shape after a

transient application of force [5–8]. Similar relaxation

times have also been measured in epithelia in vivo by

monitoring the shape relaxation of a large tissue domain

after its separation from the Drosophila pupa dorsal thorax

epithelium by laser ablation [9]. Such consistency in

mechanical relaxation time-scales may reflect the large

degree of conservation of proteic constituents and molec-

ular-scale organisation of intercellular junctions across

species. An interesting feature of cellularised aggregates

is that they often display non-linear behaviours. For

example, monolayers devoid of a substrate display two

clear regimes with different stiffnesses when subjected to

increasing extension [10], suggesting that some mechani-

cal elements may only be solicited above a certain thresh-

old. In contrast with this short time-scale elastic response,

on long time-scales (tens of minutes to hours), cell aggre-

gates exhibit a liquid-like behaviour [5,8]. This tissue
Current Opinion in Cell Biology 2016, 42:113–120
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fluidity, often associated with cellular-scale rearrange-

ments, plays a central role during morphogenetic move-

ment in embryogenesis [11]. At intermediate time-scales

(typically tens of minutes), living materials, alongside

most soft materials such as polymer melts, gels or elas-

tomers, are neither purely elastic nor purely liquid. In-

deed, experimental work by many groups has shown that

the stress imposed on the cellularised material cannot be

entirely dissipated implying that some cellular compo-

nents must bear part of the tension applied [10,12,13].

Another manifestation of this dual nature is the slow flow

(or creep) observed in some cellularised tissues when

subjected to constant tension over minute time-scales

[10]. Despite physiological relevance for the respiratory

and cardiovascular systems, epithelial tissue rheology on

sub-second time-scales has so far been insufficiently

probed.

To describe the dynamic mechanical behaviours of tis-

sues, linear rheology is often adopted as a conceptual

framework (for an introduction see [14,15�]). This relies

on describing a material’s dynamic mechanical properties

based on arrangements of standard mechanical compo-

nents: springs that are elastic, dashpots that are viscous,

and more complex active elements. Springs are parame-

trized by a stiffness that sets the force necessary to extend

them and, when the force applied is removed, they return

to their initial shape (Figure 1a). Dashpots are parame-

trized by a viscosity that sets the rate at which they can be

deformed; in contrast to springs, they do not recover their

initial length if the applied force returns to zero. Combi-

nations of springs and dashpots arranged in series or in

parallel can be used to mimic the dynamic mechanical

properties of just about any passive material in a linear

regime. For instance, a spring in parallel with a dashpot

behaves on short time-scales like a fluid, but on long time-

scales like a solid, with a transition between the two

regimes controlled by the ratio between the viscosity

and the stiffness (Figure 1a). A faithful description of

the dynamic mechanical properties of cellularised mate-

rials often necessitates the inclusion of multiple rheologi-

cal elements to take into account aspects of the

macroscale behaviour that emanate from the molecular-

scales and cellular-scales at different time-scales and

different strain regimes (Figure 1b). The larger the num-

ber of components, the richer and more complex the

behaviour can be. An extreme example is power law

behaviour, which has been observed in single cells as

well as cellularised materials [10,16,17]. It implies either

the existence of a large number of relaxation timescales

due to the multitude of distinct biochemical and physical

phenomena taking place within the material or a hierar-

chical spatial organisation of the same units within the

tissue (Figure 1b). Another fundamental challenge comes

from the fact that constant metabolic energy generation

allows for the generation of active stresses and strains

inside the material due for instance to cell growth or
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contractility which must to be added to the passive

rheological description. Though it is usually possible to

design a rheological model that accurately fits the ob-

served behaviour of tissues, the challenge resides in

identifying the molecular-scale or cellular-scale origin

of the observed mechanical response.

Mechanical behaviours of tissues arising
directly from cellular mechanics
As cellularised materials are constituted of cells, cellular

rheological properties naturally influence those of the

aggregate. We now discuss what is currently known about

the links between rheological properties of single cells

and those of cellularised aggregates.

The actomyosin cytoskeleton is widely thought to be

the most important determinant of cellular mechanical

properties while microtubules are mostly involved in

intracellular transport and cell division. Consequently,

actomyosin rheology has been the subject of intense

study (for a review [18,19]). Filaments within the actin

cytoskeleton  continuously turnover on time-scales of

minutes. They are connected to one another through

specialised crosslinkers whose attachment-detachment

endows crosslinked actin networks with viscous liquid

behaviours, dictates their relaxation time, and allows

them to rearrange to adapt to new configurations

[20–24]. Myosin motors play a dual role as crosslinkers

and force dipoles generating tension within filaments.

At time-scales long compared to F-actin turnover

(>1 min), crosslinked actomyosin networks generate a

constant tension. Overall, the exact rheological behav-

iour of cellular actin networks depends on their turn-

over, connectivity and contractility, all of which can be

modulated by signalling [25�]. In a continuum limit and

close to thermodynamic equilibrium, the cytoskeleton

is well understood within the theoretical framework of

active gels (reviewed in [26�]). Many studies on mono-

layers in embryos and in vitro suggest that as in isolated

cells, myosin contractility plays a central role in tissue

mechanics and dynamics [9,10,27�]. In particular, the

actin cortex, a submembranous layer of actin, myosin,

and actin-binding proteins present in most isolated

animal cells [28] has been shown to reorganise embry-

onic epithelia via pulses of contractility arising in

the medial apical cortex of individual cells [29,30].

To add further complexity, the mechanical properties

of cells can be altered by forces through mechanotrans-

duction [21].

Though much work has concentrated on F-actin, there is

mounting evidence that intermediate filaments play an

important role in the mechanics of isolated cells [31–34].

Intermediate filaments are strain-stiffening [35] and can

withstand far higher strain than F-actin [36] (reviewed in

[36]). In isolated cells, keratin or vimentin depletion

both lead to a decrease in cytoplasmic elasticity
www.sciencedirect.com
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Figure 1
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Rheological models of cellular aggregates. (a) In rheological models, standard mechanical components include elastic springs and viscous

dashpots. The stiffness k of the spring sets the force necessary to extend it. When the force applied to a spring is removed, it returns to its initial

shape thereby mimicking a solid. Dashpots are parametrized by a viscosity h that sets the rate at which they can be deformed. In contrast to

springs, they do not recover their initial length if the applied force becomes zero. Combinations of springs and dashpots can be used to model

tissue responses. For example, a spring in parallel with a dashpot can mimic a viscoelastic solid whose characteristic time-scale is set by the ratio

of the dashpot’s viscosity h to the spring elasticity k. (b) Examples of common rheological models used to describe cellularised tissue dynamics.

Two mechanical tests are commonly used to investigate the rheology of materials: creep tests and stress relaxation tests. The creep test

measures the deformation of a material in response to a step force. Relaxation tests monitor the evolution of stress in response to a step

deformation. Both tests are complementary in probing the system. For each model, the number of time-scales involved is indicated. The standard

linear solid has been proposed to model cellularised materials which behave as solids at long time-scales. These are composed of a spring in

series with a dashpot (kb,hb), representing the rheology of cytoplasm arranged in parallel with another spring (ka), possibly emerging from myosin

contractility. The addition of a dashpot (hc) in series with the standard linear solid can be used to mimic cell–cell rearrangements within a

cellularised aggregate. In other experimental conditions, scale-free flow of the tissue has also been observed corresponding to the arrangement in

series of large numbers of viscoelastic solids, each with a distinct stiffness and viscosity.
[31,32]. Interestingly, the turnover of intermediate fila-

ments occurs on time-scales on the order of hours [37].

Thus intermediate filaments appear to act on strain

magnitudes and time-scales clearly separated from those

of actomyosin which may indicate that they contribute to

mechanics under different circumstances.
www.sciencedirect.com 
At the cellular level, microtubules do not possess a large

enough tensile stiffness to significantly contribute to cell

rheology despite a persistence length orders of magnitude

larger than F-actin or intermediate filaments [36]. How-

ever, microtubules are resistant to compression of physi-

ological order of magnitude when crosslinked and braced
Current Opinion in Cell Biology 2016, 42:113–120
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by the surrounding actomyosin network [38] and they

may thus mechanically stabilize the cytoskeleton. How-

ever, most current experimental evidence points to

microtubules playing only an indirect role in cell mechan-

ics by sequestering Rho-GEFs at their growing ends [39].

At very short time-scales (shorter than a few seconds),

complex rheological behaviours arise from the interaction

between the solid and liquid phase of the cell, crowding,

and the plethora of biochemical reactions taking place

within the cell (reviewed in [40]). Conceptually, cells can

be thought of as a porous solid cytoskeleton immersed in

liquid cytosol. When force is abruptly applied to a cell

(<1 s), the solid and liquid phases both bear some of the

load. Movement of the solid phase towards its mechanical

equilibrium position necessitates redistribution of inter-

stitial water which results in stress dissipation [41].

Though poroelasticity and crowding likely play a role

in tissue rheology, their respective roles have yet to be

ascertained.

Mechanics of cellularised aggregates arising
from multi-cellular structures
Though some of the mechanical properties of cellular

aggregates directly stem from single cells, others arise due

to the integration of cells into a tissue. At short time-scales

and small deformations, the elastic moduli of cell aggre-

gates range from a value similar to that of single cells to a

few orders of magnitude higher for the same type of

mechanical test [10,13,42]. This higher range of moduli

may point to an important role for cell–cell junctions in

stiffening the material, either through a more optimal

organisation for load bearing and stress transmission or

signalling downstream of intercellular junction assembly.

As a consequence, the role of intercellular junctions in the

mechanics of cellularised tissues has attracted consider-

able interest.

The best understood junctions are adherens junctions

that link the actin cytoskeleton of adjacent cells via
cadherin–catenin complexes (reviewed in [43,44]). In

combination with cortical tension, adherens junctions

integrate the mechanical tension generated in single cells

through junctional myosin contractility to yield an overall

tissue tension [9,10]. Junctions act as hubs for signalling

and polarity, making them prime locations for mechan-

osensation and mechanotransduction. Interestingly, the

time-scale over which mechanotransduction takes place

in junctions [45] and the cytoskeleton [46] is similar to the

time-scale over which cellularised aggregates relax fol-

lowing stress application. Thus, mechanotransduction

may represent a selected adaptation process that allows

tissues to sustain stresses at intermediate time-scales until

cellular-scale mechanical adaptation processes can occur.

The creep observed on time-scales of a few minutes in

cellularised tissues may have its origin in biochemical

turnover within intercellular junctions in the form of
Current Opinion in Cell Biology 2016, 42:113–120 
viscous flow of adherens junctions within the plane of

the membrane or a fast attachment/detachment of cad-

herin–catenin complexes from the junctional cytoskele-

ton that would generate shear viscosity. At longer time-

scales, junctional remodelling offers a mechanism

through which some of the cellular-scale adaptation pro-

cesses can take place to allow remodelling of tissue

organisation through cell rearrangements, cell division,

and cell extrusion [47,48]. An important current question

in the field is to understand the relative importance of

junctional actomyosin, apical cortical tension due to me-

dial actomyosin, and cadherin-mediated intercellular ad-

hesion in setting tissue mechanics.

Desmosomes link the keratin intermediate filaments

(IFs) of neighbouring cells to one another forming a

second supracellular cytoskeletal network. Desmosomal

cadherins (desmocollin, desmoglein) link the membranes

of neighbouring cells and their cytoplasmic tails bind to

the desmosomal plaque that anchors to IFs (reviewed in

[49]). Desmosomal proteins turn over on a time-scale

commensurate with IFs, far slower than adherens junc-

tion proteins [50]. Many genetic mutations affecting IFs

or desmosomal proteins result in fragile epithelia [49],

emphasizing their physiological importance. Despite this,

their role in tissue mechanics remains understudied.

Experiments on monolayers with ECM suggest that

the IF network does not participate in setting tissue

tension [51]. In suspended monolayers, keratin IFs ap-

pear to become tensed at high strain [10], perhaps under-

lying their non-linear stiffness. In vitro experiments on

detached monolayers have shown that IFs dictate the

ultimate strain at which intercellular contacts rupture

[52].

At time-scales of tens of minutes to hours, cellular-scale

phenomena such as re-arrangement, cell division, and

cell extrusion become significant for tissue mechanics

[53,54]. Collectively, these phenomena can dramatically

remodel tissues as evidenced during many developmen-

tal processes such as convergent extension or germ band

elongation. The impact of each of these cellular beha-

viours on tissue mechanics is strongly dependent upon

their orientation with respect to the stress field (reviewed

in [11,30,54]).

Numerical models for understanding tissue
mechanics
To investigate the link between the tissue-scale mechan-

ics and the molecular/cellular-scale organisation and dy-

namics, researchers have increasingly been turning to

computational models. Some models explicitly incorpo-

rate all potential actors of tissue rheology (reviewed in

[55]) and these have given rise to platforms attempting to

couple mechanics and signalling in great detail such as

Chaste [56], Compucell3D [57] or Virtual cell [58]. How-

ever, this approach can become cumbersome because of
www.sciencedirect.com
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the large number of parameters involved. A more eco-

nomical design is to average the relevant biophysical

processes occurring at smaller length-scales and faster

time-scales than the phenomenon under consideration

in the form of effective rheological parameters, an ap-

proach called homogenization in mechanics (Figure 2).

When the time-scales and length-scales of the participat-

ing phenomena are well separated, homogenization can

represent a particularly efficient approach compared to

more comprehensive models, both in terms of computa-

tional speed and understanding. For example, models

seeking to understand the longer time-scales of tissue

mechanics need not incorporate the dynamics of intersti-

tial cytoplasmic flow or the actin cytoskeleton turnover

because these will be in quasi-static equilibrium for time-

scales longer than a few minutes.

A first class of models reduces cells to their centre of

mass and considers pairwise interactions of particles
Figure 2
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subjected to forces such as short range repulsion due

to contact inhibition [59] and long range attraction due

to intercellular adhesion [60,61]. Such approaches have

yielded insights into phenomena across various time-

scales to understand collective cell dynamics [62], jam-

ming where cells become caged by their neighbours

[63], visco-plastic flows [64], and over longer time-

scales, the emergence of an homeostatic state [65]

viewed as a stable mechanical equilibrium between cell

division and apoptosis. However, this approach cannot

account for cell morphology and therefore fails to accu-

rately describe the role of cell junctions in tissue me-

chanics.

To interpret changes in intercellular contact morpholo-

gies and sorting experiments [66], models incorporating

intercellular adhesion energies, cortical tensions and a

bulk elastic modulus emerged, such as vertex models

(reviewed in [67]) and cellular Potts models [68].
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Though these models often treat cells as two-dimen-

sional objects, 3D formalisms exist [69] and can be

extended to incorporate differences in active tensions

between the apical and basal side [70�] which are nec-

essary to understand the spontaneous buckling observed

in a number of tissues [70�,71,72�]. However, one cur-

rent limitation of these models is the complexity of

incorporating the wealth of rheological data observed

experimentally.

In Engineering Sciences, materials are generally de-

scribed at macroscopic scales as continua where the fine

details of their underlying structures, such as the ar-

rangement of individual atoms or defects in the micro-

structure, are lumped into effective material parameters.

In the context of a cellularised aggregate, this involves

coarse-graining the description at scales larger than the

cell size. For instance, coarse graining of vertex models

[73] leads to continuum models which incorporate active

expansile and contractile regions corresponding to

growth and contractility together with spontaneous cur-

vature. These have been successfully used for modelling

phenomena in which groups of cells are involved such as

ventral furrow formation in flies [74�], wound-healing

[75], tissue invasion [76,77], growth of tumour spheroids

[78], mechanical waves [79] and active ‘turbulent’ mo-

tion [80] in cellular sheets, somite formation [81], as well

as spontaneous buckling and vilification in the intestine

[82–84] or the brain [85]. The major drawback of these

approaches has been the difficulty in deriving the coarse

grained mechanical parameters directly from experi-

ments and the challenge in linking them to biological

phenomena. However, recent work comparing experi-

mentally observed and predicted tissue dynamics has

allowed to obtain relevant macroscopic rheological pa-

rameters [27�].

Conclusions
In summary, cellularised materials present complex me-

chanical behaviours that depend on the time-scale and

amplitude of the mechanical perturbation they are sub-

jected to. Some aspects of the mechanical behaviours of

cellularised materials may superficially appear similar to

passive engineering materials but they in fact result from

the complex dynamic interplay of multiple active energy-

consuming processes. The challenge in the coming years

will be to determine the relationship between molecular-

scale organisation/dynamics and tissue-scale mechanical

properties.
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37. Kölsch A, Windoffer R, Würflinger T, Aach T, Leube RE, Kolsch A,
Windoffer R, Wurflinger T, Aach T, Leube RE: The keratin-
filament cycle of assembly and disassembly. J Cell Sci 2010,
123:2266-2272.

38. Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J,
Mahadevan L, Parker KK, Ingber DE, Weitz DA: Microtubules can
bear enhanced compressive loads in living cells because of
lateral reinforcement. J Cell Biol 2006, 173:733-741.
www.sciencedirect.com 
39. Zhou J, Kim HY, Wang JH-C, Davidson LA: Macroscopic
stiffening of embryonic tissues via microtubules, RhoGEF and
the assembly of contractile bundles of actomyosin.
Development 2010, 137:2785-2794.

40. Kollmannsberger P, Fabry B: Linear and nonlinear rheology of
living cells. Annu Rev Mater Res 2011, 41:75-97.

41. Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA,
Thrasher AJ, Stride E, Mahadevan L, Charras GT: The cytoplasm
of living cells behaves as a poroelastic material. Nat Mater
2013, 12:253-261.

42. Delarue M, Joanny J-F, Julicher F, Prost J: Stress distributions
and cell flows in a growing cell aggregate. Interface Focus 2014
http://dx.doi.org/10.1098/rsfs.2014.0033.

43. Harris TJ, Tepass U: Adherens junctions: from molecules to
morphogenesis. Nat Rev Mol Cell Biol 2010, 11:502-514.

44. Gumbiner BM: Regulation of cadherin activity. J Cell Biol 2000,
148:403-599.

45. Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL,
Nelson WJ, Dunn AR: E-cadherin is under constitutive
actomyosin-generated tension that is increased at cell–cell
contacts upon externally applied stretch. Proc Natl Acad Sci
U S A 2012, 109:12568-12573.

46. Icard-Arcizet D, Cardoso O, Richert A, Hénon S: Cell stiffening in
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